|
import os |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
def resize_and_center(image, target_width, target_height): |
|
img = np.array(image) |
|
|
|
if img.shape[-1] == 4: |
|
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB) |
|
elif len(img.shape) == 2 or img.shape[-1] == 1: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) |
|
|
|
original_height, original_width = img.shape[:2] |
|
|
|
scale = min(target_height / original_height, target_width / original_width) |
|
new_height = int(original_height * scale) |
|
new_width = int(original_width * scale) |
|
|
|
resized_img = cv2.resize(img, (new_width, new_height), |
|
interpolation=cv2.INTER_CUBIC) |
|
|
|
padded_img = np.ones((target_height, target_width, 3), |
|
dtype=np.uint8) * 255 |
|
|
|
top = (target_height - new_height) // 2 |
|
left = (target_width - new_width) // 2 |
|
|
|
padded_img[top:top + new_height, left:left + new_width] = resized_img |
|
|
|
return Image.fromarray(padded_img) |
|
|
|
|
|
def list_dir(folder_path): |
|
|
|
file_paths = [] |
|
for root, _, files in os.walk(folder_path): |
|
for file in files: |
|
file_paths.append(os.path.join(root, file)) |
|
|
|
file_paths = sorted(file_paths) |
|
return file_paths |
|
|