|
from typing import Union |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import Tensor |
|
|
|
|
|
|
|
|
|
|
|
def compute_rope_rotations(length: int, |
|
dim: int, |
|
theta: int, |
|
*, |
|
freq_scaling: float = 1.0, |
|
device: Union[torch.device, str] = 'cpu') -> Tensor: |
|
assert dim % 2 == 0 |
|
|
|
with torch.amp.autocast(device_type='cuda', enabled=False): |
|
pos = torch.arange(length, dtype=torch.float32, device=device) |
|
freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) |
|
freqs *= freq_scaling |
|
|
|
rot = torch.einsum('..., f -> ... f', pos, freqs) |
|
rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1) |
|
rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2) |
|
return rot |
|
|
|
|
|
def apply_rope(x: Tensor, rot: Tensor) -> tuple[Tensor, Tensor]: |
|
with torch.amp.autocast(device_type='cuda', enabled=False): |
|
_x = x.float() |
|
_x = _x.view(*_x.shape[:-1], -1, 1, 2) |
|
x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1] |
|
return x_out.reshape(*x.shape).to(dtype=x.dtype) |
|
|