|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchaudio |
|
from einops import rearrange |
|
from librosa.filters import mel as librosa_mel_fn |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10): |
|
return norm_fn(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def spectral_normalize_torch(magnitudes, norm_fn): |
|
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) |
|
return output |
|
|
|
|
|
class STFTConverter(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
*, |
|
sampling_rate: float = 16_000, |
|
n_fft: int = 1024, |
|
num_mels: int = 128, |
|
hop_size: int = 256, |
|
win_size: int = 1024, |
|
fmin: float = 0, |
|
fmax: float = 8_000, |
|
norm_fn=torch.log, |
|
): |
|
super().__init__() |
|
self.sampling_rate = sampling_rate |
|
self.n_fft = n_fft |
|
self.num_mels = num_mels |
|
self.hop_size = hop_size |
|
self.win_size = win_size |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
self.norm_fn = norm_fn |
|
|
|
mel = librosa_mel_fn(sr=self.sampling_rate, |
|
n_fft=self.n_fft, |
|
n_mels=self.num_mels, |
|
fmin=self.fmin, |
|
fmax=self.fmax) |
|
mel_basis = torch.from_numpy(mel).float() |
|
hann_window = torch.hann_window(self.win_size) |
|
|
|
self.register_buffer('mel_basis', mel_basis) |
|
self.register_buffer('hann_window', hann_window) |
|
|
|
@property |
|
def device(self): |
|
return self.hann_window.device |
|
|
|
def forward(self, waveform: torch.Tensor) -> torch.Tensor: |
|
|
|
bs = waveform.shape[0] |
|
waveform = waveform.clamp(min=-1., max=1.) |
|
|
|
spec = torch.stft(waveform, |
|
self.n_fft, |
|
hop_length=self.hop_size, |
|
win_length=self.win_size, |
|
window=self.hann_window, |
|
center=True, |
|
pad_mode='reflect', |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True) |
|
|
|
spec = torch.view_as_real(spec) |
|
|
|
|
|
power = (spec.pow(2).sum(-1))**(0.5) |
|
angle = torch.atan2(spec[..., 1], spec[..., 0]) |
|
|
|
print('power 1', power.shape, power.min(), power.max(), power.mean()) |
|
print('angle 1', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spec = rearrange(spec, 'b f t c -> (b c) f t') |
|
spec = self.mel_basis.unsqueeze(0) @ spec |
|
spec = rearrange(spec, '(b c) f t -> b f t c', b=bs) |
|
|
|
power = (spec.pow(2).sum(-1))**(0.5) |
|
angle = torch.atan2(spec[..., 1], spec[..., 0]) |
|
|
|
print('power', power.shape, power.min(), power.max(), power.mean()) |
|
print('angle', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
power = torch.log10(power.clamp(min=1e-8)) |
|
|
|
print('After scaling', power.shape, power.min(), power.max(), power.mean()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return power, angle |
|
|
|
|
|
def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor: |
|
|
|
power, angle = spec |
|
|
|
bs = power.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
power = 10**power |
|
|
|
|
|
|
|
|
|
unit_vector = torch.stack([ |
|
torch.cos(angle), |
|
torch.sin(angle), |
|
], dim=-1) |
|
|
|
spec = power.unsqueeze(-1) * unit_vector |
|
|
|
|
|
spec = rearrange(spec, 'b f t c -> (b c) f t') |
|
spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec |
|
|
|
spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous() |
|
|
|
power = (spec.pow(2).sum(-1))**(0.5) |
|
angle = torch.atan2(spec[..., 1], spec[..., 0]) |
|
|
|
print('power 2', power.shape, power.min(), power.max(), power.mean()) |
|
print('angle 2', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2]) |
|
|
|
|
|
spec = torch.view_as_complex(spec) |
|
|
|
waveform = torch.istft( |
|
spec, |
|
self.n_fft, |
|
length=length, |
|
hop_length=self.hop_size, |
|
win_length=self.win_size, |
|
window=self.hann_window, |
|
center=True, |
|
normalized=False, |
|
onesided=True, |
|
return_complex=False, |
|
) |
|
|
|
return waveform |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
converter = STFTConverter(sampling_rate=16000) |
|
|
|
signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0] |
|
|
|
|
|
|
|
L = signal.shape[1] |
|
print('Input signal', signal.shape) |
|
spec = converter(signal) |
|
|
|
power, angle = spec |
|
|
|
|
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
plt.figure() |
|
plt.imshow(power[0].detach().numpy(), aspect='auto', origin='lower') |
|
plt.colorbar() |
|
plt.title('Power') |
|
plt.xlabel('Time') |
|
plt.ylabel('Frequency') |
|
plt.savefig('./output/power.png') |
|
|
|
|
|
plt.figure() |
|
plt.imshow(angle[0].detach().numpy(), aspect='auto', origin='lower') |
|
plt.colorbar() |
|
plt.title('Angle') |
|
plt.xlabel('Time') |
|
plt.ylabel('Frequency') |
|
plt.savefig('./output/angle.png') |
|
|
|
|
|
|
|
signal_recon = converter.invert(spec, length=L) |
|
print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(), |
|
signal_recon.mean()) |
|
|
|
print('MSE', torch.nn.functional.mse_loss(signal, signal_recon)) |
|
torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000) |
|
|