|
from dataclasses import dataclass |
|
from fractions import Fraction |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import av |
|
import numpy as np |
|
import torch |
|
from av import AudioFrame |
|
|
|
|
|
@dataclass |
|
class VideoInfo: |
|
duration_sec: float |
|
fps: Fraction |
|
clip_frames: torch.Tensor |
|
sync_frames: torch.Tensor |
|
all_frames: Optional[list[np.ndarray]] |
|
|
|
@property |
|
def height(self): |
|
return self.all_frames[0].shape[0] |
|
|
|
@property |
|
def width(self): |
|
return self.all_frames[0].shape[1] |
|
|
|
|
|
def read_frames(video_path: Path, list_of_fps: list[float], start_sec: float, end_sec: float, |
|
need_all_frames: bool) -> tuple[list[np.ndarray], list[np.ndarray], Fraction]: |
|
output_frames = [[] for _ in list_of_fps] |
|
next_frame_time_for_each_fps = [0.0 for _ in list_of_fps] |
|
time_delta_for_each_fps = [1 / fps for fps in list_of_fps] |
|
all_frames = [] |
|
|
|
|
|
with av.open(video_path) as container: |
|
stream = container.streams.video[0] |
|
fps = stream.guessed_rate |
|
stream.thread_type = 'AUTO' |
|
for packet in container.demux(stream): |
|
for frame in packet.decode(): |
|
frame_time = frame.time |
|
if frame_time < start_sec: |
|
continue |
|
if frame_time > end_sec: |
|
break |
|
|
|
frame_np = None |
|
if need_all_frames: |
|
frame_np = frame.to_ndarray(format='rgb24') |
|
all_frames.append(frame_np) |
|
|
|
for i, _ in enumerate(list_of_fps): |
|
this_time = frame_time |
|
while this_time >= next_frame_time_for_each_fps[i]: |
|
if frame_np is None: |
|
frame_np = frame.to_ndarray(format='rgb24') |
|
|
|
output_frames[i].append(frame_np) |
|
next_frame_time_for_each_fps[i] += time_delta_for_each_fps[i] |
|
|
|
output_frames = [np.stack(frames) for frames in output_frames] |
|
return output_frames, all_frames, fps |
|
|
|
|
|
def reencode_with_audio(video_info: VideoInfo, output_path: Path, audio: torch.Tensor, |
|
sampling_rate: int): |
|
container = av.open(output_path, 'w') |
|
output_video_stream = container.add_stream('h264', video_info.fps) |
|
output_video_stream.codec_context.bit_rate = 10 * 1e6 |
|
output_video_stream.width = video_info.width |
|
output_video_stream.height = video_info.height |
|
output_video_stream.pix_fmt = 'yuv420p' |
|
|
|
output_audio_stream = container.add_stream('aac', sampling_rate) |
|
|
|
|
|
for image in video_info.all_frames: |
|
image = av.VideoFrame.from_ndarray(image) |
|
packet = output_video_stream.encode(image) |
|
container.mux(packet) |
|
|
|
for packet in output_video_stream.encode(): |
|
container.mux(packet) |
|
|
|
|
|
audio_np = audio.numpy().astype(np.float32) |
|
audio_frame = AudioFrame.from_ndarray(audio_np, format='flt', layout='mono') |
|
audio_frame.sample_rate = sampling_rate |
|
|
|
for packet in output_audio_stream.encode(audio_frame): |
|
container.mux(packet) |
|
|
|
for packet in output_audio_stream.encode(): |
|
container.mux(packet) |
|
|
|
container.close() |
|
|
|
|
|
def remux_with_audio(video_path: Path, audio: torch.Tensor, output_path: Path, sampling_rate: int): |
|
""" |
|
NOTE: I don't think we can get the exact video duration right without re-encoding |
|
so we are not using this but keeping it here for reference |
|
""" |
|
video = av.open(video_path) |
|
output = av.open(output_path, 'w') |
|
input_video_stream = video.streams.video[0] |
|
output_video_stream = output.add_stream(template=input_video_stream) |
|
output_audio_stream = output.add_stream('aac', sampling_rate) |
|
|
|
duration_sec = audio.shape[-1] / sampling_rate |
|
|
|
for packet in video.demux(input_video_stream): |
|
|
|
if packet.dts is None: |
|
continue |
|
|
|
packet.stream = output_video_stream |
|
output.mux(packet) |
|
|
|
|
|
audio_np = audio.numpy().astype(np.float32) |
|
audio_frame = av.AudioFrame.from_ndarray(audio_np, format='flt', layout='mono') |
|
audio_frame.sample_rate = sampling_rate |
|
|
|
for packet in output_audio_stream.encode(audio_frame): |
|
output.mux(packet) |
|
|
|
for packet in output_audio_stream.encode(): |
|
output.mux(packet) |
|
|
|
video.close() |
|
output.close() |
|
|
|
output.close() |
|
|