|
import logging |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
|
|
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, |
|
setup_eval_logging) |
|
from mmaudio.model.flow_matching import FlowMatching |
|
from mmaudio.model.networks import MMAudio, get_my_mmaudio |
|
from mmaudio.model.sequence_config import SequenceConfig |
|
from mmaudio.model.utils.features_utils import FeaturesUtils |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
log = logging.getLogger() |
|
|
|
device = 'cuda' |
|
dtype = torch.bfloat16 |
|
|
|
model: ModelConfig = all_model_cfg['large_44k_v2'] |
|
model.download_if_needed() |
|
output_dir = Path('./output/gradio') |
|
|
|
setup_eval_logging() |
|
|
|
|
|
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: |
|
seq_cfg = model.seq_cfg |
|
|
|
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() |
|
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) |
|
log.info(f'Loaded weights from {model.model_path}') |
|
|
|
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, |
|
synchformer_ckpt=model.synchformer_ckpt, |
|
enable_conditions=True, |
|
mode=model.mode, |
|
bigvgan_vocoder_ckpt=model.bigvgan_16k_path) |
|
feature_utils = feature_utils.to(device, dtype).eval() |
|
|
|
return net, feature_utils, seq_cfg |
|
|
|
|
|
net, feature_utils, seq_cfg = get_model() |
|
|
|
|
|
@torch.inference_mode() |
|
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int, |
|
cfg_strength: float, duration: float): |
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) |
|
|
|
clip_frames, sync_frames, duration = load_video(video, duration) |
|
clip_frames = clip_frames.unsqueeze(0) |
|
sync_frames = sync_frames.unsqueeze(0) |
|
seq_cfg.duration = duration |
|
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) |
|
|
|
audios = generate(clip_frames, |
|
sync_frames, [prompt], |
|
negative_text=[negative_prompt], |
|
feature_utils=feature_utils, |
|
net=net, |
|
fm=fm, |
|
rng=rng, |
|
cfg_strength=cfg_strength) |
|
audio = audios.float().cpu()[0] |
|
|
|
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') |
|
output_dir.mkdir(exist_ok=True, parents=True) |
|
video_save_path = output_dir / f'{current_time_string}.mp4' |
|
make_video(video, |
|
video_save_path, |
|
audio, |
|
sampling_rate=seq_cfg.sampling_rate, |
|
duration_sec=seq_cfg.duration) |
|
return video_save_path |
|
|
|
|
|
@torch.inference_mode() |
|
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float, |
|
duration: float): |
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) |
|
|
|
clip_frames = sync_frames = None |
|
seq_cfg.duration = duration |
|
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) |
|
|
|
audios = generate(clip_frames, |
|
sync_frames, [prompt], |
|
negative_text=[negative_prompt], |
|
feature_utils=feature_utils, |
|
net=net, |
|
fm=fm, |
|
rng=rng, |
|
cfg_strength=cfg_strength) |
|
audio = audios.float().cpu()[0] |
|
|
|
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S') |
|
output_dir.mkdir(exist_ok=True, parents=True) |
|
audio_save_path = output_dir / f'{current_time_string}.flac' |
|
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate) |
|
return audio_save_path |
|
|
|
|
|
video_to_audio_tab = gr.Interface( |
|
fn=video_to_audio, |
|
inputs=[ |
|
gr.Video(), |
|
gr.Text(label='Prompt'), |
|
gr.Text(label='Negative prompt', value='music'), |
|
gr.Number(label='Seed', value=0, precision=0, minimum=0), |
|
gr.Number(label='Num steps', value=25, precision=0, minimum=1), |
|
gr.Number(label='Guidance Strength', value=4.5, minimum=1), |
|
gr.Number(label='Duration (sec)', value=8, minimum=1), |
|
], |
|
outputs='playable_video', |
|
cache_examples=False, |
|
title='MMAudio — Video-to-Audio Synthesis', |
|
) |
|
|
|
text_to_audio_tab = gr.Interface( |
|
fn=text_to_audio, |
|
inputs=[ |
|
gr.Text(label='Prompt'), |
|
gr.Text(label='Negative prompt'), |
|
gr.Number(label='Seed', value=0, precision=0, minimum=0), |
|
gr.Number(label='Num steps', value=25, precision=0, minimum=1), |
|
gr.Number(label='Guidance Strength', value=4.5, minimum=1), |
|
gr.Number(label='Duration (sec)', value=8, minimum=1), |
|
], |
|
outputs='audio', |
|
cache_examples=False, |
|
title='MMAudio — Text-to-Audio Synthesis', |
|
) |
|
|
|
if __name__ == "__main__": |
|
gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab], |
|
['Video-to-Audio', 'Text-to-Audio']).launch(server_port=17888, |
|
allowed_paths=[output_dir]) |
|
|