|
import logging |
|
from argparse import ArgumentParser |
|
from pathlib import Path |
|
|
|
import torch |
|
import torchaudio |
|
|
|
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, |
|
setup_eval_logging) |
|
from mmaudio.model.flow_matching import FlowMatching |
|
from mmaudio.model.networks import MMAudio, get_my_mmaudio |
|
from mmaudio.model.utils.features_utils import FeaturesUtils |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
log = logging.getLogger() |
|
|
|
|
|
@torch.inference_mode() |
|
def main(): |
|
setup_eval_logging() |
|
|
|
parser = ArgumentParser() |
|
parser.add_argument('--variant', |
|
type=str, |
|
default='large_44k_v2', |
|
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2') |
|
parser.add_argument('--video', type=Path, help='Path to the video file') |
|
parser.add_argument('--prompt', type=str, help='Input prompt', default='') |
|
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='') |
|
parser.add_argument('--duration', type=float, default=8.0) |
|
parser.add_argument('--cfg_strength', type=float, default=4.5) |
|
parser.add_argument('--num_steps', type=int, default=25) |
|
|
|
parser.add_argument('--mask_away_clip', action='store_true') |
|
|
|
parser.add_argument('--output', type=Path, help='Output directory', default='./output') |
|
parser.add_argument('--seed', type=int, help='Random seed', default=42) |
|
parser.add_argument('--skip_video_composite', action='store_true') |
|
parser.add_argument('--full_precision', action='store_true') |
|
|
|
args = parser.parse_args() |
|
|
|
if args.variant not in all_model_cfg: |
|
raise ValueError(f'Unknown model variant: {args.variant}') |
|
model: ModelConfig = all_model_cfg[args.variant] |
|
model.download_if_needed() |
|
seq_cfg = model.seq_cfg |
|
|
|
if args.video: |
|
video_path: Path = Path(args.video).expanduser() |
|
else: |
|
video_path = None |
|
prompt: str = args.prompt |
|
negative_prompt: str = args.negative_prompt |
|
output_dir: str = args.output.expanduser() |
|
seed: int = args.seed |
|
num_steps: int = args.num_steps |
|
duration: float = args.duration |
|
cfg_strength: float = args.cfg_strength |
|
skip_video_composite: bool = args.skip_video_composite |
|
mask_away_clip: bool = args.mask_away_clip |
|
|
|
device = 'cuda' |
|
dtype = torch.float32 if args.full_precision else torch.bfloat16 |
|
|
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() |
|
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) |
|
log.info(f'Loaded weights from {model.model_path}') |
|
|
|
|
|
rng = torch.Generator(device=device) |
|
rng.manual_seed(seed) |
|
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) |
|
|
|
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, |
|
synchformer_ckpt=model.synchformer_ckpt, |
|
enable_conditions=True, |
|
mode=model.mode, |
|
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, |
|
need_vae_encoder=False) |
|
feature_utils = feature_utils.to(device, dtype).eval() |
|
|
|
if video_path is not None: |
|
log.info(f'Using video {video_path}') |
|
video_info = load_video(video_path, duration) |
|
clip_frames = video_info.clip_frames |
|
sync_frames = video_info.sync_frames |
|
duration = video_info.duration_sec |
|
if mask_away_clip: |
|
clip_frames = None |
|
else: |
|
clip_frames = clip_frames.unsqueeze(0) |
|
sync_frames = sync_frames.unsqueeze(0) |
|
else: |
|
log.info('No video provided -- text-to-audio mode') |
|
clip_frames = sync_frames = None |
|
|
|
seq_cfg.duration = duration |
|
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) |
|
|
|
log.info(f'Prompt: {prompt}') |
|
log.info(f'Negative prompt: {negative_prompt}') |
|
|
|
audios = generate(clip_frames, |
|
sync_frames, [prompt], |
|
negative_text=[negative_prompt], |
|
feature_utils=feature_utils, |
|
net=net, |
|
fm=fm, |
|
rng=rng, |
|
cfg_strength=cfg_strength) |
|
audio = audios.float().cpu()[0] |
|
if video_path is not None: |
|
save_path = output_dir / f'{video_path.stem}.flac' |
|
else: |
|
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '') |
|
save_path = output_dir / f'{safe_filename}.flac' |
|
torchaudio.save(save_path, audio, seq_cfg.sampling_rate) |
|
|
|
log.info(f'Audio saved to {save_path}') |
|
if video_path is not None and not skip_video_composite: |
|
video_save_path = output_dir / f'{video_path.stem}.mp4' |
|
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate) |
|
log.info(f'Video saved to {output_dir / video_save_path}') |
|
|
|
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30)) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|