InvSR / src /diffusers /callbacks.py
OAOA's picture
first commit
bfa59ab
from typing import Any, Dict, List
from .configuration_utils import ConfigMixin, register_to_config
from .utils import CONFIG_NAME
class PipelineCallback(ConfigMixin):
"""
Base class for all the official callbacks used in a pipeline. This class provides a structure for implementing
custom callbacks and ensures that all callbacks have a consistent interface.
Please implement the following:
`tensor_inputs`: This should return a list of tensor inputs specific to your callback. You will only be able to
include
variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
`callback_fn`: This method defines the core functionality of your callback.
"""
config_name = CONFIG_NAME
@register_to_config
def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None):
super().__init__()
if (cutoff_step_ratio is None and cutoff_step_index is None) or (
cutoff_step_ratio is not None and cutoff_step_index is not None
):
raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.")
if cutoff_step_ratio is not None and (
not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0)
):
raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.")
@property
def tensor_inputs(self) -> List[str]:
raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}")
def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]:
raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}")
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
return self.callback_fn(pipeline, step_index, timestep, callback_kwargs)
class MultiPipelineCallbacks:
"""
This class is designed to handle multiple pipeline callbacks. It accepts a list of PipelineCallback objects and
provides a unified interface for calling all of them.
"""
def __init__(self, callbacks: List[PipelineCallback]):
self.callbacks = callbacks
@property
def tensor_inputs(self) -> List[str]:
return [input for callback in self.callbacks for input in callback.tensor_inputs]
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
"""
Calls all the callbacks in order with the given arguments and returns the final callback_kwargs.
"""
for callback in self.callbacks:
callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs)
return callback_kwargs
class SDCFGCutoffCallback(PipelineCallback):
"""
Callback function for Stable Diffusion Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
`cutoff_step_index`), this callback will disable the CFG.
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
"""
tensor_inputs = ["prompt_embeds"]
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
cutoff_step_index = self.config.cutoff_step_index
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
cutoff_step = (
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
)
if step_index == cutoff_step:
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
pipeline._guidance_scale = 0.0
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
return callback_kwargs
class SDXLCFGCutoffCallback(PipelineCallback):
"""
Callback function for Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
`cutoff_step_index`), this callback will disable the CFG.
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
"""
tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"]
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
cutoff_step_index = self.config.cutoff_step_index
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
cutoff_step = (
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
)
if step_index == cutoff_step:
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
add_text_embeds = callback_kwargs[self.tensor_inputs[1]]
add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens
add_time_ids = callback_kwargs[self.tensor_inputs[2]]
add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector
pipeline._guidance_scale = 0.0
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
callback_kwargs[self.tensor_inputs[2]] = add_time_ids
return callback_kwargs
class IPAdapterScaleCutoffCallback(PipelineCallback):
"""
Callback function for any pipeline that inherits `IPAdapterMixin`. After certain number of steps (set by
`cutoff_step_ratio` or `cutoff_step_index`), this callback will set the IP Adapter scale to `0.0`.
Note: This callback mutates the IP Adapter attention processors by setting the scale to 0.0 after the cutoff step.
"""
tensor_inputs = []
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
cutoff_step_index = self.config.cutoff_step_index
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
cutoff_step = (
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
)
if step_index == cutoff_step:
pipeline.set_ip_adapter_scale(0.0)
return callback_kwargs