InvSR / utils /resize.py
OAOA's picture
first commit
bfa59ab
"""
A standalone PyTorch implementation for fast and efficient bicubic resampling.
The resulting values are the same to MATLAB function imresize('bicubic').
## Author: Sanghyun Son
## Email: sonsang35@gmail.com (primary), thstkdgus35@snu.ac.kr (secondary)
## Version: 1.2.0
## Last update: July 9th, 2020 (KST)
Dependency: torch
Example::
>>> import torch
>>> import core
>>> x = torch.arange(16).float().view(1, 1, 4, 4)
>>> y = core.imresize(x, sizes=(3, 3))
>>> print(y)
tensor([[[[ 0.7506, 2.1004, 3.4503],
[ 6.1505, 7.5000, 8.8499],
[11.5497, 12.8996, 14.2494]]]])
"""
import math
import typing
import torch
from torch.nn import functional as F
__all__ = ['imresize']
_I = typing.Optional[int]
_D = typing.Optional[torch.dtype]
def nearest_contribution(x: torch.Tensor) -> torch.Tensor:
range_around_0 = torch.logical_and(x.gt(-0.5), x.le(0.5))
cont = range_around_0.to(dtype=x.dtype)
return cont
def linear_contribution(x: torch.Tensor) -> torch.Tensor:
ax = x.abs()
range_01 = ax.le(1)
cont = (1 - ax) * range_01.to(dtype=x.dtype)
return cont
def cubic_contribution(x: torch.Tensor, a: float = -0.5) -> torch.Tensor:
ax = x.abs()
ax2 = ax * ax
ax3 = ax * ax2
range_01 = ax.le(1)
range_12 = torch.logical_and(ax.gt(1), ax.le(2))
cont_01 = (a + 2) * ax3 - (a + 3) * ax2 + 1
cont_01 = cont_01 * range_01.to(dtype=x.dtype)
cont_12 = (a * ax3) - (5 * a * ax2) + (8 * a * ax) - (4 * a)
cont_12 = cont_12 * range_12.to(dtype=x.dtype)
cont = cont_01 + cont_12
return cont
def gaussian_contribution(x: torch.Tensor, sigma: float = 2.0) -> torch.Tensor:
range_3sigma = (x.abs() <= 3 * sigma + 1)
# Normalization will be done after
cont = torch.exp(-x.pow(2) / (2 * sigma**2))
cont = cont * range_3sigma.to(dtype=x.dtype)
return cont
def discrete_kernel(kernel: str, scale: float, antialiasing: bool = True) -> torch.Tensor:
'''
For downsampling with integer scale only.
'''
downsampling_factor = int(1 / scale)
if kernel == 'cubic':
kernel_size_orig = 4
else:
raise ValueError('Pass!')
if antialiasing:
kernel_size = kernel_size_orig * downsampling_factor
else:
kernel_size = kernel_size_orig
if downsampling_factor % 2 == 0:
a = kernel_size_orig * (0.5 - 1 / (2 * kernel_size))
else:
kernel_size -= 1
a = kernel_size_orig * (0.5 - 1 / (kernel_size + 1))
with torch.no_grad():
r = torch.linspace(-a, a, steps=kernel_size)
k = cubic_contribution(r).view(-1, 1)
k = torch.matmul(k, k.t())
k /= k.sum()
return k
def reflect_padding(x: torch.Tensor, dim: int, pad_pre: int, pad_post: int) -> torch.Tensor:
'''
Apply reflect padding to the given Tensor.
Note that it is slightly different from the PyTorch functional.pad,
where boundary elements are used only once.
Instead, we follow the MATLAB implementation
which uses boundary elements twice.
For example,
[a, b, c, d] would become [b, a, b, c, d, c] with the PyTorch implementation,
while our implementation yields [a, a, b, c, d, d].
'''
b, c, h, w = x.size()
if dim == 2 or dim == -2:
padding_buffer = x.new_zeros(b, c, h + pad_pre + pad_post, w)
padding_buffer[..., pad_pre:(h + pad_pre), :].copy_(x)
for p in range(pad_pre):
padding_buffer[..., pad_pre - p - 1, :].copy_(x[..., p, :])
for p in range(pad_post):
padding_buffer[..., h + pad_pre + p, :].copy_(x[..., -(p + 1), :])
else:
padding_buffer = x.new_zeros(b, c, h, w + pad_pre + pad_post)
padding_buffer[..., pad_pre:(w + pad_pre)].copy_(x)
for p in range(pad_pre):
padding_buffer[..., pad_pre - p - 1].copy_(x[..., p])
for p in range(pad_post):
padding_buffer[..., w + pad_pre + p].copy_(x[..., -(p + 1)])
return padding_buffer
def padding(x: torch.Tensor,
dim: int,
pad_pre: int,
pad_post: int,
padding_type: typing.Optional[str] = 'reflect') -> torch.Tensor:
if padding_type is None:
return x
elif padding_type == 'reflect':
x_pad = reflect_padding(x, dim, pad_pre, pad_post)
else:
raise ValueError('{} padding is not supported!'.format(padding_type))
return x_pad
def get_padding(base: torch.Tensor, kernel_size: int, x_size: int) -> typing.Tuple[int, int, torch.Tensor]:
base = base.long()
r_min = base.min()
r_max = base.max() + kernel_size - 1
if r_min <= 0:
pad_pre = -r_min
pad_pre = pad_pre.item()
base += pad_pre
else:
pad_pre = 0
if r_max >= x_size:
pad_post = r_max - x_size + 1
pad_post = pad_post.item()
else:
pad_post = 0
return pad_pre, pad_post, base
def get_weight(dist: torch.Tensor,
kernel_size: int,
kernel: str = 'cubic',
sigma: float = 2.0,
antialiasing_factor: float = 1) -> torch.Tensor:
buffer_pos = dist.new_zeros(kernel_size, len(dist))
for idx, buffer_sub in enumerate(buffer_pos):
buffer_sub.copy_(dist - idx)
# Expand (downsampling) / Shrink (upsampling) the receptive field.
buffer_pos *= antialiasing_factor
if kernel == 'cubic':
weight = cubic_contribution(buffer_pos)
elif kernel == 'gaussian':
weight = gaussian_contribution(buffer_pos, sigma=sigma)
else:
raise ValueError('{} kernel is not supported!'.format(kernel))
weight /= weight.sum(dim=0, keepdim=True)
return weight
def reshape_tensor(x: torch.Tensor, dim: int, kernel_size: int) -> torch.Tensor:
# Resize height
if dim == 2 or dim == -2:
k = (kernel_size, 1)
h_out = x.size(-2) - kernel_size + 1
w_out = x.size(-1)
# Resize width
else:
k = (1, kernel_size)
h_out = x.size(-2)
w_out = x.size(-1) - kernel_size + 1
unfold = F.unfold(x, k)
unfold = unfold.view(unfold.size(0), -1, h_out, w_out)
return unfold
def reshape_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _I, _I, int, int]:
if x.dim() == 4:
b, c, h, w = x.size()
elif x.dim() == 3:
c, h, w = x.size()
b = None
elif x.dim() == 2:
h, w = x.size()
b = c = None
else:
raise ValueError('{}-dim Tensor is not supported!'.format(x.dim()))
x = x.view(-1, 1, h, w)
return x, b, c, h, w
def reshape_output(x: torch.Tensor, b: _I, c: _I) -> torch.Tensor:
rh = x.size(-2)
rw = x.size(-1)
# Back to the original dimension
if b is not None:
x = x.view(b, c, rh, rw) # 4-dim
else:
if c is not None:
x = x.view(c, rh, rw) # 3-dim
else:
x = x.view(rh, rw) # 2-dim
return x
def cast_input(x: torch.Tensor) -> typing.Tuple[torch.Tensor, _D]:
if x.dtype != torch.float32 or x.dtype != torch.float64:
dtype = x.dtype
x = x.float()
else:
dtype = None
return x, dtype
def cast_output(x: torch.Tensor, dtype: _D) -> torch.Tensor:
if dtype is not None:
if not dtype.is_floating_point:
x = x - x.detach() + x.round()
# To prevent over/underflow when converting types
if dtype is torch.uint8:
x = x.clamp(0, 255)
x = x.to(dtype=dtype)
return x
def resize_1d(x: torch.Tensor,
dim: int,
size: int,
scale: float,
kernel: str = 'cubic',
sigma: float = 2.0,
padding_type: str = 'reflect',
antialiasing: bool = True) -> torch.Tensor:
'''
Args:
x (torch.Tensor): A torch.Tensor of dimension (B x C, 1, H, W).
dim (int):
scale (float):
size (int):
Return:
'''
# Identity case
if scale == 1:
return x
# Default bicubic kernel with antialiasing (only when downsampling)
if kernel == 'cubic':
kernel_size = 4
else:
kernel_size = math.floor(6 * sigma)
if antialiasing and (scale < 1):
antialiasing_factor = scale
kernel_size = math.ceil(kernel_size / antialiasing_factor)
else:
antialiasing_factor = 1
# We allow margin to both sizes
kernel_size += 2
# Weights only depend on the shape of input and output,
# so we do not calculate gradients here.
with torch.no_grad():
pos = torch.linspace(
0,
size - 1,
steps=size,
dtype=x.dtype,
device=x.device,
)
pos = (pos + 0.5) / scale - 0.5
base = pos.floor() - (kernel_size // 2) + 1
dist = pos - base
weight = get_weight(
dist,
kernel_size,
kernel=kernel,
sigma=sigma,
antialiasing_factor=antialiasing_factor,
)
pad_pre, pad_post, base = get_padding(base, kernel_size, x.size(dim))
# To backpropagate through x
x_pad = padding(x, dim, pad_pre, pad_post, padding_type=padding_type)
unfold = reshape_tensor(x_pad, dim, kernel_size)
# Subsampling first
if dim == 2 or dim == -2:
sample = unfold[..., base, :]
weight = weight.view(1, kernel_size, sample.size(2), 1)
else:
sample = unfold[..., base]
weight = weight.view(1, kernel_size, 1, sample.size(3))
# Apply the kernel
x = sample * weight
x = x.sum(dim=1, keepdim=True)
return x
def downsampling_2d(x: torch.Tensor, k: torch.Tensor, scale: int, padding_type: str = 'reflect') -> torch.Tensor:
c = x.size(1)
k_h = k.size(-2)
k_w = k.size(-1)
k = k.to(dtype=x.dtype, device=x.device)
k = k.view(1, 1, k_h, k_w)
k = k.repeat(c, c, 1, 1)
e = torch.eye(c, dtype=k.dtype, device=k.device, requires_grad=False)
e = e.view(c, c, 1, 1)
k = k * e
pad_h = (k_h - scale) // 2
pad_w = (k_w - scale) // 2
x = padding(x, -2, pad_h, pad_h, padding_type=padding_type)
x = padding(x, -1, pad_w, pad_w, padding_type=padding_type)
y = F.conv2d(x, k, padding=0, stride=scale)
return y
def imresize(x: torch.Tensor,
scale: typing.Optional[float] = None,
sizes: typing.Optional[typing.Tuple[int, int]] = None,
kernel: typing.Union[str, torch.Tensor] = 'cubic',
sigma: float = 2,
rotation_degree: float = 0,
padding_type: str = 'reflect',
antialiasing: bool = True) -> torch.Tensor:
"""
Args:
x (torch.Tensor):
scale (float):
sizes (tuple(int, int)):
kernel (str, default='cubic'):
sigma (float, default=2):
rotation_degree (float, default=0):
padding_type (str, default='reflect'):
antialiasing (bool, default=True):
Return:
torch.Tensor:
"""
if scale is None and sizes is None:
raise ValueError('One of scale or sizes must be specified!')
if scale is not None and sizes is not None:
raise ValueError('Please specify scale or sizes to avoid conflict!')
x, b, c, h, w = reshape_input(x)
if sizes is None and scale is not None:
'''
# Check if we can apply the convolution algorithm
scale_inv = 1 / scale
if isinstance(kernel, str) and scale_inv.is_integer():
kernel = discrete_kernel(kernel, scale, antialiasing=antialiasing)
elif isinstance(kernel, torch.Tensor) and not scale_inv.is_integer():
raise ValueError(
'An integer downsampling factor '
'should be used with a predefined kernel!'
)
'''
# Determine output size
sizes = (math.ceil(h * scale), math.ceil(w * scale))
scales = (scale, scale)
if scale is None and sizes is not None:
scales = (sizes[0] / h, sizes[1] / w)
x, dtype = cast_input(x)
if isinstance(kernel, str) and sizes is not None:
# Core resizing module
x = resize_1d(
x,
-2,
size=sizes[0],
scale=scales[0],
kernel=kernel,
sigma=sigma,
padding_type=padding_type,
antialiasing=antialiasing)
x = resize_1d(
x,
-1,
size=sizes[1],
scale=scales[1],
kernel=kernel,
sigma=sigma,
padding_type=padding_type,
antialiasing=antialiasing)
elif isinstance(kernel, torch.Tensor) and scale is not None:
x = downsampling_2d(x, kernel, scale=int(1 / scale))
x = reshape_output(x, b, c)
x = cast_output(x, dtype)
return x