InvSR / utils /util_ema.py
OAOA's picture
first commit
bfa59ab
import torch
from torch import nn
class LitEma(nn.Module):
def __init__(self, model, decay=0.9999, use_num_upates=True):
super().__init__()
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.m_name2s_name = {}
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
else torch.tensor(-1, dtype=torch.int))
for name, p in model.named_parameters():
if p.requires_grad:
# remove as '.'-character is not allowed in buffers
s_name = name.replace('.', '')
self.m_name2s_name.update({name: s_name})
self.register_buffer(s_name, p.clone().detach().data)
self.collected_params = []
def reset_num_updates(self):
del self.num_updates
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
def forward(self, model):
decay = self.decay
if self.num_updates >= 0:
self.num_updates += 1
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if m_param[key].requires_grad:
sname = self.m_name2s_name[key]
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
else:
assert not key in self.m_name2s_name
def copy_to(self, model):
"""
Copying the ema state (i.e., buffers) to the targeted model
Input:
model: targeted model
"""
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if m_param[key].requires_grad:
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
else:
assert not key in self.m_name2s_name
def store(self, parameters):
"""
Save the parameters of the targeted model into the temporary pool for restoring later.
Args:
parameters: parameters of the targeted model.
Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters from the temporaty pool (stored with the `store` method).
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
def resume(self, ckpt, num_updates):
"""
Resume from the targeted checkpoint, i.e., copying the checkpoints to ema buffers
Input:
model: targerted model
"""
self.register_buffer('num_updates', torch.tensor(num_updates, dtype=torch.int))
shadow_params = dict(self.named_buffers())
for key, value in ckpt.items():
try:
shadow_params[self.m_name2s_name[key]].data.copy_(value.data)
except:
if key.startswith('module') and key not in shadow_params:
key = key[7:]
shadow_params[self.m_name2s_name[key]].data.copy_(value.data)