from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import BaseOutput, logging from diffusers.utils.torch_utils import randn_tensor from diffusers.schedulers.scheduling_utils import SchedulerMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class TDDSVDStochasticIterativeSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor class TDDSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin): """ Multistep and onestep sampling for consistency models. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 40): The number of diffusion steps to train the model. sigma_min (`float`, defaults to 0.002): Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation. sigma_max (`float`, defaults to 80.0): Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation. sigma_data (`float`, defaults to 0.5): The standard deviation of the data distribution from the EDM [paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation. s_noise (`float`, defaults to 1.0): The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. Defaults to 1.0 from the original implementation. rho (`float`, defaults to 7.0): The parameter for calculating the Karras sigma schedule from the EDM [paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation. clip_denoised (`bool`, defaults to `True`): Whether to clip the denoised outputs to `(-1, 1)`. timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*): An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in increasing order. """ order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 40, sigma_min: float = 0.002, sigma_max: float = 80.0, sigma_data: float = 0.5, s_noise: float = 1.0, rho: float = 7.0, clip_denoised: bool = True, eta: float = 0.3, ): # standard deviation of the initial noise distribution self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5 # self.init_noise_sigma = sigma_max ramp = np.linspace(0, 1, num_train_timesteps) sigmas = self._convert_to_karras(ramp) sigmas = np.concatenate([sigmas, np.array([0])]) timesteps = self.sigma_to_t(sigmas) # setable values self.num_inference_steps = None self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(timesteps) self.custom_timesteps = False self.is_scale_input_called = False self._step_index = None self.sigmas.to("cpu") # to avoid too much CPU/GPU communication self.set_eta(eta) self.original_timesteps = self.timesteps.clone() self.original_sigmas = self.sigmas.clone() def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() return indices.item() @property def step_index(self): """ The index counter for current timestep. It will increae 1 after each scheduler step. """ return self._step_index def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] ) -> torch.FloatTensor: """ Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`. Args: sample (`torch.FloatTensor`): The input sample. timestep (`float` or `torch.FloatTensor`): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ # Get sigma corresponding to timestep if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5) self.is_scale_input_called = True return sample # def _sigma_to_t(self, sigma, log_sigmas): # # get log sigma # log_sigma = np.log(np.maximum(sigma, 1e-10)) # # get distribution # dists = log_sigma - log_sigmas[:, np.newaxis] # # get sigmas range # low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) # high_idx = low_idx + 1 # low = log_sigmas[low_idx] # high = log_sigmas[high_idx] # # interpolate sigmas # w = (low - log_sigma) / (low - high) # w = np.clip(w, 0, 1) # # transform interpolation to time range # t = (1 - w) * low_idx + w * high_idx # t = t.reshape(sigma.shape) # return t def sigma_to_t(self, sigmas: Union[float, np.ndarray]): """ Gets scaled timesteps from the Karras sigmas for input to the consistency model. Args: sigmas (`float` or `np.ndarray`): A single Karras sigma or an array of Karras sigmas. Returns: `float` or `np.ndarray`: A scaled input timestep or scaled input timestep array. """ if not isinstance(sigmas, np.ndarray): sigmas = np.array(sigmas, dtype=np.float64) timesteps = 0.25 * np.log(sigmas + 1e-44) return timesteps def set_timesteps( self, num_inference_steps: Optional[int] = None, device: Union[str, torch.device] = None, timesteps: Optional[List[int]] = None, ): """ Sets the timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed, `num_inference_steps` must be `None`. """ if num_inference_steps is None and timesteps is None: raise ValueError( "Exactly one of `num_inference_steps` or `timesteps` must be supplied." ) if num_inference_steps is not None and timesteps is not None: raise ValueError( "Can only pass one of `num_inference_steps` or `timesteps`." ) # Follow DDPMScheduler custom timesteps logic if timesteps is not None: for i in range(1, len(timesteps)): if timesteps[i] >= timesteps[i - 1]: raise ValueError("`timesteps` must be in descending order.") if timesteps[0] >= self.config.num_train_timesteps: raise ValueError( f"`timesteps` must start before `self.config.train_timesteps`:" f" {self.config.num_train_timesteps}." ) timesteps = np.array(timesteps, dtype=np.int64) self.custom_timesteps = True else: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps step_ratio = self.config.num_train_timesteps // self.num_inference_steps timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64) self.custom_timesteps = False self.original_indices = timesteps # Map timesteps to Karras sigmas directly for multistep sampling # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675 num_train_timesteps = self.config.num_train_timesteps ramp = timesteps.copy() ramp = ramp / (num_train_timesteps - 1) sigmas = self._convert_to_karras(ramp) timesteps = self.sigma_to_t(sigmas) sigmas = np.concatenate([sigmas, [0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas).to(device=device) if str(device).startswith("mps"): # mps does not support float64 self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) else: self.timesteps = torch.from_numpy(timesteps).to(device=device) self._step_index = None self.sigmas.to("cpu") # to avoid too much CPU/GPU communication # Modified _convert_to_karras implementation that takes in ramp as argument def _convert_to_karras(self, ramp): """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = self.config.sigma_min sigma_max: float = self.config.sigma_max rho = self.config.rho min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def get_scalings(self, sigma): sigma_data = self.config.sigma_data c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 return c_skip, c_out def get_scalings_for_boundary_condition(self, sigma): """ Gets the scalings used in the consistency model parameterization (from Appendix C of the [paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition. `epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`. Args: sigma (`torch.FloatTensor`): The current sigma in the Karras sigma schedule. Returns: `tuple`: A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out` (which weights the consistency model output) is the second element. """ sigma_min = self.config.sigma_min sigma_data = self.config.sigma_data c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2) c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 return c_skip, c_out # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index def _init_step_index(self, timestep): if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) index_candidates = (self.timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(index_candidates) > 1: step_index = index_candidates[1] else: step_index = index_candidates[0] self._step_index = step_index.item() def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[TDDSVDStochasticIterativeSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): The direct output from the learned diffusion model. timestep (`float`): The current timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_consistency_models.TDDSVDStochasticIterativeSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if ( isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" f" `{self.__class__}.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) sigma_min = self.config.sigma_min sigma_max = self.config.sigma_max if self.step_index is None: self._init_step_index(timestep) # sigma_next corresponds to next_t in original implementation next_step_index = self.step_index + 1 sigma = self.sigmas[self.step_index] if next_step_index < len(self.sigmas): sigma_next = self.sigmas[next_step_index] else: # Set sigma_next to sigma_min sigma_next = self.sigmas[-1] # Get scalings for boundary conditions c_skip, c_out = self.get_scalings_for_boundary_condition(sigma) if next_step_index < len(self.original_indices): next_step_original_index = self.original_indices[next_step_index] step_s_original_index = int(next_step_original_index + self.eta * (self.config.num_train_timesteps - 1 - next_step_original_index)) sigma_s = self.original_sigmas[step_s_original_index] else: sigma_s = self.sigmas[-1] # 1. Denoise model output using boundary conditions denoised = c_out * model_output + c_skip * sample if self.config.clip_denoised: denoised = denoised.clamp(-1, 1) d = (sample - denoised) / sigma sample_s = sample + d * (sigma_s - sigma) # 2. Sample z ~ N(0, s_noise^2 * I) # Noise is not used for onestep sampling. if len(self.timesteps) > 1: noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator, ) else: noise = torch.zeros_like(model_output) z = noise * self.config.s_noise sigma_hat = sigma_next.clamp(min = 0, max = sigma_max) # sigma_hat = sigma_next.clamp(min = sigma_min, max = sigma_max) # print("denoise currently") # print(sigma_hat) # origin # prev_sample = denoised + z * sigma_hat prev_sample = sample_s + z * (sigma_hat - sigma_s) # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return TDDSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample) # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to( device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to( original_samples.device, dtype=torch.float32 ) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps def set_eta(self, eta: float): assert 0.0 <= eta <= 1.0 self.eta = eta