File size: 7,286 Bytes
1dc1a26 aa37927 9f383fe aa37927 9f383fe aa37927 9f383fe aa37927 14258b4 aa37927 1dc1a26 aa37927 14258b4 1dc1a26 59696b8 1dc1a26 59696b8 2d2c3ae 59696b8 aa37927 14258b4 aa37927 04438ea aa37927 1dc1a26 aa37927 51387dd aa37927 51387dd aa37927 1dc1a26 aa37927 1dc1a26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# app.py
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLUMNS,
COLS,
BENCHMARK_COLS,
EVAL_COLS,
EVAL_TYPES,
ModelType,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialization
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape) # Debug
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist()) # Debug
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
if LEADERBOARD_DF.empty:
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
else:
default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
print("Default Selection before ensuring 'model':", default_selection) # Debug
# Ensure "model" is included
if "model" not in default_selection:
default_selection.insert(0, "model")
print("Default Selection after ensuring 'model':", default_selection) # Debug
leaderboard = Leaderboard(
value=LEADERBOARD_DF,
datatype=[col.type for col in COLUMNS],
select_columns=SelectColumns(
default_selection=default_selection,
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
label="Select Columns to Display:",
),
search_columns=[col.name for col in COLUMNS if col.name in ["model", "license"]],
hide_columns=[col.name for col in COLUMNS if col.hidden],
filter_columns=[
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
ColumnFilter(
"still_on_hub", type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# No need to call leaderboard.render() since it's created within the Gradio context
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# Since the evaluation queues are empty, display a message
with gr.Column():
gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
# Removed num_examples_input since we're using a fixed number
# num_examples_input = gr.Number(
# label="Number of Examples per Subject (e.g., 10)",
# value=10,
# precision=0
# )
with gr.Column():
precision = gr.Dropdown(
choices=[i.value for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
# num_examples_input # Removed
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|