File size: 7,286 Bytes
1dc1a26
 
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f383fe
aa37927
9f383fe
aa37927
 
 
 
 
 
9f383fe
aa37927
 
 
 
 
 
 
14258b4
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc1a26
 
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
14258b4
 
 
1dc1a26
 
 
 
 
 
 
 
59696b8
 
 
 
1dc1a26
59696b8
 
 
 
 
 
 
 
 
 
 
 
2d2c3ae
59696b8
 
 
 
aa37927
 
 
 
 
 
 
 
 
14258b4
aa37927
04438ea
 
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc1a26
 
 
 
 
 
aa37927
 
 
51387dd
aa37927
 
 
 
 
 
51387dd
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc1a26
aa37927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc1a26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# app.py

import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    COLUMNS,
    COLS,
    BENCHMARK_COLS,
    EVAL_COLS,
    EVAL_TYPES,
    ModelType,
    WeightType,
    Precision
)

from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialization
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)  # Debug
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist())  # Debug

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            if LEADERBOARD_DF.empty:
                gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
            else:
                default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
                print("Default Selection before ensuring 'model':", default_selection)  # Debug

                # Ensure "model" is included
                if "model" not in default_selection:
                    default_selection.insert(0, "model")
                    print("Default Selection after ensuring 'model':", default_selection)  # Debug

                leaderboard = Leaderboard(
                    value=LEADERBOARD_DF,
                    datatype=[col.type for col in COLUMNS],
                    select_columns=SelectColumns(
                        default_selection=default_selection,
                        cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
                        label="Select Columns to Display:",
                    ),
                    search_columns=[col.name for col in COLUMNS if col.name in ["model", "license"]],
                    hide_columns=[col.name for col in COLUMNS if col.hidden],
                    filter_columns=[
                        ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
                        ColumnFilter("precision", type="checkboxgroup", label="Precision"),
                        ColumnFilter(
                            "still_on_hub", type="boolean", label="Deleted/incomplete", default=True
                        ),
                    ],

                    bool_checkboxgroup_label="Hide models",
                    interactive=False,
                )
                # No need to call leaderboard.render() since it's created within the Gradio context

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                # Since the evaluation queues are empty, display a message
                with gr.Column():
                    gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )
                    # Removed num_examples_input since we're using a fixed number
                    # num_examples_input = gr.Number(
                    #     label="Number of Examples per Subject (e.g., 10)",
                    #     value=10,
                    #     precision=0
                    # )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                    # num_examples_input  # Removed
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()