|
import glob |
|
import json |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import numpy as np |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run. |
|
""" |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
average_accuracy: float |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
|
|
@classmethod |
|
def init_from_json_file(cls, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config", {}) |
|
|
|
|
|
precision = Precision.from_str(config.get("model_dtype", "Unknown")) |
|
|
|
|
|
org_and_model = config.get("model_name", "").split("/", 1) |
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
result_key = f"{model}_{precision.value.name}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
result_key = f"{org}_{model}_{precision.value.name}" |
|
full_model = "/".join(org_and_model) |
|
|
|
results_data = data.get("results", {}) |
|
|
|
|
|
per_subject_results = {} |
|
for task in Tasks: |
|
subject = task.value.benchmark |
|
accuracy = results_data.get(subject, None) |
|
if accuracy is not None: |
|
per_subject_results[subject] = accuracy |
|
|
|
average_accuracy = results_data.get('average', None) |
|
|
|
|
|
model_type = ModelType.from_str(config.get("model_type", "")) |
|
weight_type = WeightType[config.get("weight_type", "Original")] |
|
license = config.get("license", "?") |
|
likes = config.get("likes", 0) |
|
num_params = config.get("params", 0) |
|
date = config.get("submitted_time", "") |
|
still_on_hub = config.get("still_on_hub", True) |
|
architecture = config.get("architecture", "Unknown") |
|
|
|
|
|
return cls( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=per_subject_results, |
|
average_accuracy=average_accuracy, |
|
precision=precision, |
|
revision=config.get("model_sha", ""), |
|
still_on_hub=still_on_hub, |
|
architecture=architecture, |
|
model_type=model_type, |
|
weight_type=weight_type, |
|
license=license, |
|
likes=likes, |
|
num_params=num_params, |
|
date=date, |
|
) |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.precision.name: self.precision.value.name, |
|
AutoEvalColumn.model_type.name: self.model_type.value.name, |
|
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, |
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.revision.name: self.revision, |
|
AutoEvalColumn.average.name: self.average_accuracy, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
} |
|
|
|
for task in Tasks: |
|
subject = task.value.benchmark |
|
data_dict[task.value.col_name] = self.results.get(subject, None) |
|
|
|
return data_dict |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
for file in files: |
|
if file.endswith(".json"): |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
|
|
eval_name = eval_result.eval_name |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
return results |
|
|