File size: 8,010 Bytes
1f72938
 
 
 
 
 
 
 
9312707
b8e2d45
841bad9
d591541
 
841bad9
d591541
 
 
 
 
841bad9
d591541
b8e2d45
d591541
b8e2d45
d591541
 
b8e2d45
 
1f72938
9312707
1f72938
 
 
 
 
 
 
 
 
 
 
 
 
9312707
 
 
 
 
 
1f72938
9312707
1f72938
 
 
 
9312707
 
 
 
 
 
 
1f72938
 
 
 
 
9312707
 
 
1f72938
 
9312707
 
1f72938
 
 
 
 
 
 
 
 
 
 
 
 
 
9312707
e029c8d
9312707
d591541
9312707
d591541
1f72938
9312707
1f72938
 
 
 
 
 
9312707
d591541
e029c8d
 
1f72938
 
d591541
 
1f72938
d591541
9312707
1f72938
 
9312707
 
 
 
 
 
d591541
1f72938
9312707
d591541
 
1f72938
 
 
 
 
 
 
d591541
1f72938
d591541
 
1f72938
d591541
1f72938
d591541
1f72938
d591541
1f72938
9059886
841bad9
 
9059886
d591541
841bad9
 
b8e2d45
 
 
e029c8d
d591541
1f72938
d591541
841bad9
d591541
 
841bad9
d591541
 
 
 
 
 
 
 
 
 
 
 
841bad9
b8e2d45
 
 
 
d591541
 
 
 
 
4f14bd8
841bad9
a010e64
d591541
a010e64
841bad9
 
e4befd4
841bad9
9059886
841bad9
9059886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d591541
 
 
 
 
 
 
 
 
 
 
1f72938
e029c8d
 
 
1f72938
e029c8d
9312707
1f72938
d591541
e029c8d
1f72938
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import streamlit as st
import similarity_check as sc
import cv2
from PIL import Image
import numpy as np
import demo
import streamlit as st
import request_json.sbt_request_generator as sbt
import check_hkid_validity as chv
import av
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase, RTCConfiguration, WebRtcMode
import search_engine as se
import get_bank_statement as bs

# def init():
#     face_locations = []
#     # face_encodings = []
#     face_names = []
#     process_this_frame = True

#     score = []

#     faces = 0

# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
#     image = frame.to_ndarray(format="bgr24")
    

def main():

    # st.title("SBT Web Application")
    # today's date = get_today_date

    # global data
    html_temp = """
        <body style="background-color:red;">
        <div style="background-color:teal ;padding:10px">
        <h2 style="color:white;text-align:center;">SBT Web Application</h2>
        </div>
        </body>
        """
    st.markdown(html_temp, unsafe_allow_html=True)
    
    if 'hkid_image_validity' not in st.session_state:
        st.session_state.hkid_image_validity = False

    if 'data' not in st.session_state:
        st.session_state['data'] = {}

    st.header("I. Similarity Check")
    image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg', 'pdf'], accept_multiple_files=True)
    if len(image_file) == 1:
        image1 = Image.open(image_file[0])
        st.text("HKID card")
        st.image(image1)
        image1.save('image/hkid.jpg', 'JPEG')
        if chv.check_hkid('image/hkid.jpg'):
            st.text("Valid HKID card.")
            st.session_state.hkid_image_validity = True
        else:
            st.text("Invalid HKID card. Please upload again!")
            st.session_state.hkid_image_validity = False
    elif len(image_file) == 2:
        image1 = Image.open(image_file[0])
        st.text("HKID card")
        st.image(image1)
        image2 = Image.open(image_file[1])
        # image2 = image_file[1]
        # image2.save('image/hkid.jpg', 'JPEG')
        # file_name = image_file[1].name
        st.text("Bank statement")
        st.image(image2)

    print(f"the id is: {st.session_state.hkid_image_validity}")
    # if image_file2 is not None:
    #     image2 = Image.open(image_file)
    #     st.text("Bank statement")
    #     st.image(image2)

    # path1 = 'IMG_4495.jpg'
    # path2 = 'hangseng_page-0001.jpg'    
    # image1 = save_image(image1)
    # image2 = save_image(image2)

    data = {}
    if st.button("Recognise"):
        with st.spinner('Wait for it...'):
            # global data
            data = sc.get_data(image1, image2)
            # se.get_data_link(data['chi_name_id'], data["name_on_id"], data["address"])
        if 'data' in st.session_state:
            data["nationality"] = 'N/A' # for hkid
            st.session_state['data'] = data
            st.session_state['verified'] = "True"
        st.success('Done!')
        score = int(st.session_state['data']['similarity_score'])
        st.text(f'score: {score}')
        if (score>85):
            st.text(f'matched')
        else:
            st.text(f'unmatched')
        
        data = st.session_state['data']
        st.header("Ia. HKID Data Extraction")
        st.text(f'English Name: {data["name_on_id"]}') # name is without space
        st.text(f'Chinese Name: {data["chi_name_id"]}') # name is without space
        st.text(f'HKID: {data["hkid"]} and validity: {data["validity"]}')
        st.text(f'Date of issue: {data["issue_date"]}')
        st.text(f'Date of birth: {data["dateofbirth"]}')
        st.text(f'nationality: {data["nationality"]}')
    
        st.header("Ib. Bank Statement Data Extraction")
        st.text(f'Name: {data["nameStatement"]}')
        st.text(f'Address: {data["address"]}')
        st.text(f'Bank: {data["bank"]}')
        st.text(f'Date: {data["statementDate"]}')
        st.text(f'Asset: {data["totalAsset"]} hkd')
        st.text(f'Liabilities: {data["totalLiability"]} hkd')

    if 'data' in st.session_state:
        tempout = st.session_state['data']
        print(f'data: {tempout}')
    

    # st.header("II. Facial Recognition")
    # run = st.checkbox('Run')

    # webrtc_streamer(key="example")
    # 1. Web Rtc
    # webrtc_streamer(key="jhv", video_frame_callback=video_frame_callback)


    # # init the camera
    # face_locations = []
    # face_encodings = []
    # face_names = []
    # process_this_frame = True

    # score = []

    # faces = 0

    # FRAME_WINDOW = st.image([])


    # server_ip = "127.0.0.1"
    # server_port = 6666

    # camera = cv2.VideoCapture(0)
    # s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    # s.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1000000)
    
    # if "face_rec" not in st.session_state:
    #     st.session_state.face_rec = []

    # while run:

        # rtc_configuration = RTCConfiguration({"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]})

        # # Capture frame-by-frame
        # # Grab a single frame of video
        # ret, frame = camera.read()
    
        # result = frame
        # # Initialize the WebRTC streaming
        # webrtc_ctx = webrtc_streamer(
        #     key="face_rec",
        #     mode=WebRtcMode.SENDRECV,
        #     rtc_configuration=rtc_configuration,
        #     # video_transformer_factory=WebcamTransformer,
        #     video_frame_callback=video_frame_callback,
        #     media_stream_constraints={"video": True, "audio": False},
        #     async_processing=True,
        # )

        # print(f'xd: look here {type(webrtc_ctx)}')

        # st.session_state.face_rec = webrtc_ctx

        # if webrtc_ctx.video_transformer:
        #     st.header("Webcam Preview")
        #     frame = webrtc_ctx.video_transformer.frame
        #     result, process_this_frame, face_locations, faces, face_names, score = demo.process_frame(frame, process_this_frame, face_locations, faces, face_names, score)
        #     st.video(result)

        # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        # FRAME_WINDOW.image(result)

        # if ret is not None:
        #     ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY),30])

        # x_as_bytes = pickle.dumps(buffer)

        # s.sendto((x_as_bytes),(server_ip, server_port))

        # camera.release()
        # if ret:
        #     # ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY)])
        #     # result, process_this_frame, face_locations, faces, face_names, score = demo.process_frame(frame, process_this_frame, face_locations, faces, face_names, score)
        #     # Display the resulting image
        #     FRAME_WINDOW.image(frame)
        # else:
        #     print("there is no frame detected")
        #     continue

        # print(score)
        # if len(score) > 20:
        #     avg_score =  sum(score) / len(score)
        #     st.write(avg_score)
        #     # st.write(f'{demo.convert_distance_to_percentage(avg_score, 0.45)}')
        #     # camera.release()
        #     run = not run
        #     st.session_state['data']['avg_score'] = str(avg_score)


    ## unrelated

    st.header("III. Search Engine and Bank Statement")
    user_input_id  = st.text_input("Enter the user ID here", " ")
    if st.button("Search data"):
        with st.spinner('Searching data...'):
            se.get_data_link(user_input_id)
        st.success('Done!')
    if st.button("Fetch bank statement"):
        with st.spinner('getting statements...'):
            bs.get_bs(user_input_id)
        st.success('Done!')
    if st.button("Confirm"):
        st.experimental_set_query_params(
            verified=True,
        )
        with st.spinner('Sending data...'):
            print(st.session_state['data'])
            sbt.split_data(st.session_state['data'])
        st.success('Done!')
    

if __name__ == '__main__':
    main()