Spaces:
Runtime error
Runtime error
File size: 5,430 Bytes
2c2e788 0497fcb 2c2e788 0497fcb 2c2e788 e3e52e9 f18dd2a e3e52e9 34f951b e3e52e9 f18dd2a e3e52e9 34f951b e3e52e9 08cbdf8 2c2e788 e3e52e9 2c2e788 e3e52e9 f18dd2a 2c2e788 e3e52e9 08cbdf8 8313c30 e3e52e9 2c2e788 0497fcb 2c2e788 b01ef75 8313c30 e3e52e9 f18dd2a 34f951b 8313c30 2c2e788 b01ef75 2c2e788 e3e52e9 0497fcb 2c2e788 0497fcb 2c2e788 0497fcb 08cbdf8 e3e52e9 08cbdf8 0497fcb 08cbdf8 0497fcb 08cbdf8 2c2e788 e3e52e9 2c2e788 e3e52e9 2c2e788 e3e52e9 2c2e788 0497fcb 2c2e788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import uuid
import gradio as gr
from llmriddles.questions import QuestionExecutor
from llmriddles.questions import list_ordered_questions
_QUESTION_IDS = {}
_QUESTIONS = list_ordered_questions()
_LANG = os.environ.get('QUESTION_LANG', 'cn')
_LLM = os.environ.get('QUESTION_LLM', 'chatgpt')
if _LANG == "cn":
requirement_ph = """
欢迎来玩LLM Riddles!
你将通过本游戏对语言大模型产生更深刻的理解。
在本游戏中,你需要构造一个提给一个语言大模型的问题,使得它回复的答案符合要求。
点击\"下一题\"开始游戏
"""
requirement_label = "游戏须知"
question_ph = "你对大语言模型的提问"
question_label = "提问栏"
answer_ph = "大语言模型的回答"
answer_label = "回答栏"
submit_label = "提交"
next_label = "下一题"
api_ph = "你个人的大语言模型 API Key (例如:ChatGPT)"
api_label = "API key"
predict_label = "结果正确性"
explanation_label = "结果解释"
game_cleared_label = "祝贺!你已成功通关!"
correct_label = "正确"
wrong_label = "错误"
api_error_info = "请在提交问题之前先输入你的 API Key"
try_again_label = "再玩一次"
elif _LANG == "en":
requirement_ph = """
Welcome to LLM Riddles!
In this game, you'll gain a deeper understanding of language models.
Your challenge is to create a question to ask a language model in a way that the answer it provides meets specific criteria.
Click \'Next\' to Start
"""
requirement_label = "Requirements"
question_ph = "Your Question for LLM"
question_label = "Question"
answer_ph = "Answer From LLM"
answer_label = "Answer"
submit_label = "Submit"
next_label = "Next"
api_ph = "Your API Key (e.g. ChatGPT)"
api_label = "API key"
predict_label = "Correctness"
explanation_label = "Explanation"
game_cleared_label = "Congratulations!"
correct_label = "Correct"
wrong_label = "Wrong"
api_error_info = "Please Enter API Key Before Submitting Question."
try_again_label = "Try Again"
else:
raise KeyError("invalid _LANG: {}".format(_LANG))
def _need_api_key():
return _LLM == 'chatgpt'
def _get_api_key_cfgs(api_key):
if _LLM == 'chatgpt':
return {'api_key': api_key}
else:
return {}
if __name__ == '__main__':
with gr.Blocks(theme='ParityError/Interstellar') as demo:
with gr.Row():
with gr.Column():
gr_requirement = gr.TextArea(placeholder=requirement_ph, label=requirement_label)
gr_question = gr.TextArea(placeholder=question_ph, label=question_label)
gr_answer = gr.TextArea(placeholder=answer_ph, label=answer_label)
gr_submit = gr.Button(submit_label, interactive=True)
with gr.Column():
gr_api_key = gr.Text(placeholder=api_ph, label=api_label, type='password',
visible=_need_api_key())
gr_uuid = gr.Text(value='', visible=False)
gr_predict = gr.Label(label=predict_label)
gr_explanation = gr.TextArea(label=explanation_label)
gr_next = gr.Button(next_label)
def _next_question(uuid_):
if not uuid_:
uuid_ = str(uuid.uuid4())
global _QUESTION_IDS
_qid = _QUESTION_IDS.get(uuid_, -1)
_qid += 1
_QUESTION_IDS[uuid_] = _qid
if _qid >= len(_QUESTIONS):
del _QUESTION_IDS[uuid_]
return game_cleared_label, '', '', {}, '', \
gr.Button(submit_label, interactive=True), \
gr.Button(try_again_label, interactive=True), \
''
else:
executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
return executor.question_text, '', '', {}, '', \
gr.Button(submit_label, interactive=True), \
gr.Button(next_label, interactive=False), \
uuid_
gr_next.click(
fn=_next_question,
inputs=[gr_uuid],
outputs=[
gr_requirement, gr_question, gr_answer,
gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
],
)
def _submit_answer(qs_text: str, api_key: str, uuid_: str):
if _need_api_key() and not api_key:
raise gr.Error(api_error_info)
_qid = _QUESTION_IDS[uuid_]
executor = QuestionExecutor(
_QUESTIONS[_qid], _LANG,
llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {}
)
answer_text, correctness, explanation = executor.check(qs_text)
labels = {correct_label: 1.0} if correctness else {wrong_label: 1.0}
if correctness:
return answer_text, labels, explanation, gr.Button(next_label, interactive=True), uuid_
else:
return answer_text, labels, explanation, gr.Button(next_label, interactive=False), uuid_
gr_submit.click(
_submit_answer,
inputs=[gr_question, gr_api_key, gr_uuid],
outputs=[gr_answer, gr_predict, gr_explanation, gr_next, gr_uuid],
)
demo.launch()
|