Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from llmriddles.questions import QuestionExecutor | |
from llmriddles.questions import list_ordered_questions | |
_QUESTION_ID = -1 | |
_QUESTIONS = list_ordered_questions() | |
_LANG = os.environ.get('QUESTION_LANG', 'cn') | |
_LLM = os.environ.get('QUESTION_LLM', 'chatgpt') | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr_requirement = gr.TextArea(placeholder='Click \'Next\' to Start', label='Requirements') | |
gr_question = gr.TextArea(placeholder='Your Question for LLM', label='Question') | |
gr_answer = gr.TextArea(placeholder='Answer From LLM', label='Answer') | |
gr_submit = gr.Button('Submit', interactive=False) | |
with gr.Column(): | |
gr_predict = gr.Label(label='Correctness') | |
gr_explanation = gr.TextArea(label='Explanation') | |
gr_next = gr.Button('Next') | |
def _next_question(): | |
global _QUESTION_ID | |
_QUESTION_ID += 1 | |
if _QUESTION_ID >= len(_QUESTIONS): | |
return 'Congratulations!', '', '', {}, '', \ | |
gr.Button('Submit', interactive=False), \ | |
gr.Button('Next', interactive=False) | |
else: | |
executor = QuestionExecutor(_QUESTIONS[_QUESTION_ID], _LANG) | |
return executor.question_text, '', '', {}, '', \ | |
gr.Button('Submit', interactive=True), \ | |
gr.Button('Next', interactive=False) | |
gr_next.click( | |
fn=_next_question, | |
inputs=[], | |
outputs=[gr_requirement, gr_question, gr_answer, gr_predict, gr_explanation, gr_submit, gr_next], | |
) | |
def _submit_answer(qs_text: str): | |
executor = QuestionExecutor(_QUESTIONS[_QUESTION_ID], _LANG) | |
answer_text, correctness, explanation = executor.check(qs_text) | |
labels = {'Correct': 1.0} if correctness else {'Wrong': 1.0} | |
if correctness: | |
return answer_text, labels, explanation, gr.Button('Next', interactive=True) | |
else: | |
return answer_text, labels, explanation, gr.Button('Next', interactive=False) | |
gr_submit.click( | |
_submit_answer, | |
inputs=[gr_question], | |
outputs=[gr_answer, gr_predict, gr_explanation, gr_next], | |
) | |
demo.launch() | |