niuyazhe commited on
Commit
7f0571c
2 Parent(s): a1f027b 1221734

Merge remote-tracking branch 'gh-origin/hf'

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: LLMRiddles
3
  emoji: 🚀
4
  colorFrom: indigo
5
  colorTo: green
@@ -21,11 +21,19 @@ python_version: 3.8
21
  <br>
22
  </div>
23
 
 
 
24
  ## :thinking: What's This
25
  Welcome to LLM Riddles! This is a game of wits and courage with language models. In the game, you need to construct questions that interact with the language model to get answers that meet the requirements. In this process, you can use your brain and use all the methods you can think of to get the model to output the results required by the answer.
26
 
27
  ## :space_invader: How to Play
28
- We provide an online version for players to directly access and try out. Local deployment can be done in the following ways:
 
 
 
 
 
 
29
  ### ChatGPT + Chinese
30
  ```shell
31
  QUESTION_LANG=cn QUESTION_LLM='chatgpt' QUESTION_LLM_KEY=<your API key> python3 -u app.py
@@ -50,14 +58,15 @@ The question format should include the following points:
50
  - Modify the corresponding chapter question files
51
  - Modification of init.py
52
 
53
- For a complete example, please refer to: [Submit your own level design]()
54
 
55
  ## :writing_hand: Roadmap
56
 
57
  - [x] Support custom levels
58
- - [ ] Online trial link
59
- - [ ] Hugging Face Space link
60
  - [x] Support Mistral-7B(English version)
 
61
  - [ ] Support Baichuan2-7B(Chinese version)
62
  - [ ] Support LLaMA2-7B(English version)
63
  - [ ] LLM inference speed optimization
@@ -68,12 +77,12 @@ For a complete example, please refer to: [Submit your own level design]()
68
  - Discuss on OpenDILab's WeChat group (i.e. add us on WeChat: ding314assist)
69
  <img src=https://github.com/opendilab/LLMRiddles/blob/main/llmriddles/assets/wechat.jpeg width=35% />
70
 
71
- ## Special Thanks
72
  - Thanks to [Haoqiang Fan](https://www.zhihu.com/people/haoqiang-fan) for his original idea and title, which provided inspiration and motivation for the development and expansion of this project.
73
  - Thanks to [HuggingFace](https://huggingface.co) for supporting and assisting the game.
74
  - Thanks to [LLM Riddles contributors](https://github.com/opendilab/LLMRiddles/graphs/contributors) for their implementation and support.
75
 
76
- ## License
77
  All code within this repository is under [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
78
 
79
  <p align="right">(<a href="#top">back to top</a>)</p>
 
1
  ---
2
+ title: LLMRiddles-ChatGPT-EN
3
  emoji: 🚀
4
  colorFrom: indigo
5
  colorTo: green
 
21
  <br>
22
  </div>
23
 
24
+ English | [简体中文](https://github.com/opendilab/LLMRiddles/blob/main/README_zh.md)
25
+
26
  ## :thinking: What's This
27
  Welcome to LLM Riddles! This is a game of wits and courage with language models. In the game, you need to construct questions that interact with the language model to get answers that meet the requirements. In this process, you can use your brain and use all the methods you can think of to get the model to output the results required by the answer.
28
 
29
  ## :space_invader: How to Play
30
+ We provide an online version for players to directly access and try out.
31
+ - [ChatGPT + English(w/o key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGPTEN)
32
+ - [ChatGPT + Chinese(w/o key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGPTCN)
33
+ - [Mistral + English(w/ key)](https://4521e4d138d3779498.gradio.live)
34
+ - [ChatGPT + Chinese(w/ key)](http://llmriddles.opendilab.net/)
35
+
36
+ Local deployment can be done in the following ways:
37
  ### ChatGPT + Chinese
38
  ```shell
39
  QUESTION_LANG=cn QUESTION_LLM='chatgpt' QUESTION_LLM_KEY=<your API key> python3 -u app.py
 
58
  - Modify the corresponding chapter question files
59
  - Modification of init.py
60
 
61
+ For a complete example, please refer to: [Submit your own level design](https://github.com/opendilab/LLMRiddles/pull/6)
62
 
63
  ## :writing_hand: Roadmap
64
 
65
  - [x] Support custom levels
66
+ - [x] Online trial link
67
+ - [x] Hugging Face Space link
68
  - [x] Support Mistral-7B(English version)
69
+ - [ ] Support ChatGLM(Chinese version)
70
  - [ ] Support Baichuan2-7B(Chinese version)
71
  - [ ] Support LLaMA2-7B(English version)
72
  - [ ] LLM inference speed optimization
 
77
  - Discuss on OpenDILab's WeChat group (i.e. add us on WeChat: ding314assist)
78
  <img src=https://github.com/opendilab/LLMRiddles/blob/main/llmriddles/assets/wechat.jpeg width=35% />
79
 
80
+ ## :star2: Special Thanks
81
  - Thanks to [Haoqiang Fan](https://www.zhihu.com/people/haoqiang-fan) for his original idea and title, which provided inspiration and motivation for the development and expansion of this project.
82
  - Thanks to [HuggingFace](https://huggingface.co) for supporting and assisting the game.
83
  - Thanks to [LLM Riddles contributors](https://github.com/opendilab/LLMRiddles/graphs/contributors) for their implementation and support.
84
 
85
+ ## :label: License
86
  All code within this repository is under [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
87
 
88
  <p align="right">(<a href="#top">back to top</a>)</p>
README_zh.md CHANGED
@@ -8,11 +8,19 @@
8
  <br>
9
  </div>
10
 
 
 
11
  ## :thinking: 什么是LLM Riddles
12
  欢迎来到 LLM Riddles!这是一个与语言模型斗智斗勇的游戏。在游戏中,你需要构造与语言模型交互的问题,来得到符合要求的答案。在这个过程中,你可以开动脑筋,用你想到的所有方式,让模型输出答案要求的结果。
13
 
14
  ## :space_invader: 如何试玩
15
- 我们提供了在线版本以供玩家直接访问试玩,本地部署可以通过以下方式:
 
 
 
 
 
 
16
  ### ChatGPT + 中文
17
  ```shell
18
  QUESTION_LANG=cn QUESTION_LLM='chatgpt' QUESTION_LLM_KEY=<your API key> python3 -u app.py
@@ -42,16 +50,17 @@ QUESTION_LANG=en QUESTION_LLM='llama2-7b' python3 -u app.py
42
  - 对应章节问题文件的修改
43
  - init.py的修改
44
 
45
- 完整示例请参考:[提交属于自己的关卡设计]()
46
 
47
  ## :writing_hand: 未来计划
48
 
49
  - [x] 支持自定义关卡
50
- - [ ] 在线试玩链接
51
- - [ ] Hugging Face Space 链接
52
- - [ ] 支持LLaMA2-7B(英文)
53
- - [ ] 支持Mistral-7B(英文)
54
  - [ ] 支持Baichuan2-7B(中文)
 
55
  - [ ] LLM 推理速度优化
56
 
57
  ## :speech_balloon: 反馈问题 & 提出建议
@@ -60,12 +69,12 @@ QUESTION_LANG=en QUESTION_LLM='llama2-7b' python3 -u app.py
60
  - 在OpenDILab的群组中加入讨论(通过 WeChat: ding314assist 添加小助手微信)
61
  <img src=https://github.com/opendilab/LLMRiddles/blob/main/llmriddles/assets/wechat.jpeg width=35% />
62
 
63
- ## Special Thanks
64
  - 感谢 [Haoqiang Fan](https://www.zhihu.com/people/haoqiang-fan) 的原始创意和题目,为本项目的开发和扩展提供了灵感与动力。
65
  - 感谢 [HuggingFace](https://huggingface.co) 对游戏的支持与协助。
66
  - 感谢 [LLM Riddles contributors](https://github.com/opendilab/LLMRiddles/graphs/contributors) 的实现与支持。
67
 
68
- ## License
69
  All code within this repository is under [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
70
 
71
  <p align="right">(<a href="#top">back to top</a>)</p>
 
8
  <br>
9
  </div>
10
 
11
+ [English](https://github.com/opendilab/LLMRiddles/blob/main/README.md) | 简体中文
12
+
13
  ## :thinking: 什么是LLM Riddles
14
  欢迎来到 LLM Riddles!这是一个与语言模型斗智斗勇的游戏。在游戏中,你需要构造与语言模型交互的问题,来得到符合要求的答案。在这个过程中,你可以开动脑筋,用你想到的所有方式,让模型输出答案要求的结果。
15
 
16
  ## :space_invader: 如何试玩
17
+ 我们提供了在线版本以供玩家直接访问试玩:
18
+ - [ChatGPT + 英文(需配置api key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGPTEN)
19
+ - [ChatGPT + 中文(需配置api key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGPTCN)
20
+ - [Mistral + 英文(已预设api key)](https://4521e4d138d3779498.gradio.live)
21
+ - [ChatGPT + 中文(已预设api key)](http://llmriddles.opendilab.net/)
22
+
23
+ 本地部署可以通过以下方式:
24
  ### ChatGPT + 中文
25
  ```shell
26
  QUESTION_LANG=cn QUESTION_LLM='chatgpt' QUESTION_LLM_KEY=<your API key> python3 -u app.py
 
50
  - 对应章节问题文件的修改
51
  - init.py的修改
52
 
53
+ 完整示例请参考:[提交属于自己的关卡设计](https://github.com/opendilab/LLMRiddles/pull/6)
54
 
55
  ## :writing_hand: 未来计划
56
 
57
  - [x] 支持自定义关卡
58
+ - [x] 在线试玩链接
59
+ - [x] Hugging Face Space 链接
60
+ - [x] 支持Mistral-7B(英文)
61
+ - [ ] 支持ChatGLM(中文)
62
  - [ ] 支持Baichuan2-7B(中文)
63
+ - [ ] 支持LLaMA2-7B(英文)
64
  - [ ] LLM 推理速度优化
65
 
66
  ## :speech_balloon: 反馈问题 & 提出建议
 
69
  - 在OpenDILab的群组中加入讨论(通过 WeChat: ding314assist 添加小助手微信)
70
  <img src=https://github.com/opendilab/LLMRiddles/blob/main/llmriddles/assets/wechat.jpeg width=35% />
71
 
72
+ ## :star2: Special Thanks
73
  - 感谢 [Haoqiang Fan](https://www.zhihu.com/people/haoqiang-fan) 的原始创意和题目,为本项目的开发和扩展提供了灵感与动力。
74
  - 感谢 [HuggingFace](https://huggingface.co) 对游戏的支持与协助。
75
  - 感谢 [LLM Riddles contributors](https://github.com/opendilab/LLMRiddles/graphs/contributors) 的实现与支持。
76
 
77
+ ## :label: License
78
  All code within this repository is under [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
79
 
80
  <p align="right">(<a href="#top">back to top</a>)</p>
app.py CHANGED
@@ -1,13 +1,13 @@
 
1
  import os
2
  import uuid
3
- import logging
4
 
5
  import gradio as gr
6
 
7
  from llmriddles.questions import QuestionExecutor
8
  from llmriddles.questions import list_ordered_questions
9
 
10
- _QUESTION_IDS = {}
11
  count = 0
12
  _QUESTIONS = list_ordered_questions()
13
  _LANG = os.environ.get('QUESTION_LANG', 'cn')
@@ -17,21 +17,18 @@ assert _LLM in ['chatgpt', 'mistral-7b'], _LLM
17
  _LLM_KEY = os.environ.get('QUESTION_LLM_KEY', None)
18
  _DEBUG = os.environ.get('DEBUG', 'false').lower() == 'true'
19
 
 
 
 
 
20
  if _LANG == "cn":
21
- if _DEBUG:
22
- logging.getLogger().setLevel(logging.INFO)
23
- else:
24
- logging.getLogger().setLevel(logging.WARNING)
25
  title = "完蛋!我被 LLM 拿捏了"
26
  requirement_ph = """
27
- 欢迎来到 LLM Riddles!
28
-
29
- 你将通过本游戏对大语言模型产生更深刻的理解。在本游戏中,你需要构造一个提给语言大模型的问题,使得它回复的答案符合题目要求。
30
-
31
- 点击\"下一题\"即可开始游戏
32
  """
33
  requirement_label = "游戏须知/说明"
34
- question_ph = "你对大语言模型的提问"
35
  question_label = "玩家提问栏"
36
  answer_ph = "大语言模型的回答"
37
  answer_label = "大语言模型回答栏"
@@ -41,17 +38,19 @@ if _LANG == "cn":
41
  api_label = "API key"
42
  predict_label = "结果正确性"
43
  explanation_label = "结果详细解释"
44
- game_cleared_label = "祝贺!你已成功通关!"
45
  correct_label = "正确"
46
  wrong_label = "错误"
47
  api_error_info = "请在提交问题之前先输入你的 API Key"
48
  try_again_label = "再玩一次"
 
49
  title_markdown = """
50
  <div align="center">
51
  <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
52
  </div>
53
- <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab"> 🎭LLM Riddles:完蛋!我被 LLM 拿捏了</a></h2>
54
- <h4 align="center"> 如果你喜欢这个项目,请给我们在 GitHub 点个 star ✨ 。我们将会持续保持更新。再次感谢游戏<a href="https://www.zhihu.com/people/haoqiang-fan"> 原作者 </a>的奇思妙想! </h4>
 
55
  <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供娱乐。<h5></strong>
56
  """
57
  tos_markdown = """
@@ -65,14 +64,11 @@ if _LANG == "cn":
65
  elif _LANG == "en":
66
  title = "LLM Riddles: Oops! Rolling in LLM."
67
  requirement_ph = """
68
- Welcome to LLM Riddles!
69
-
70
- In this game, you'll gain a deeper understanding of language models. Your challenge is to create a question to ask a language model in a way that the answer it provides meets specific criteria.
71
-
72
- Click \'Next\' to Start
73
  """
74
  requirement_label = "Game Requirements"
75
- question_ph = "Your Question for LLM"
76
  question_label = "Question"
77
  answer_ph = "Answer From LLM"
78
  answer_label = "Answer"
@@ -82,17 +78,18 @@ elif _LANG == "en":
82
  api_label = "API key"
83
  predict_label = "Correctness"
84
  explanation_label = "Explanation"
85
- game_cleared_label = "Congratulations!"
86
  correct_label = "Correct"
87
  wrong_label = "Wrong"
88
  api_error_info = "Please Enter API Key Before Submitting Question."
89
  try_again_label = "Try Again"
 
90
  title_markdown = """
91
  <div align="center">
92
  <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
93
  </div>
94
- <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab"> 🎭LLM Riddles: Oops! Rolling in LLM.</a></h2>
95
- <h4 align="center"> If you like our project, please give us a star ✨ on GitHub for latest update. Thanks for the interesting idea of the original game <a href="https://www.zhihu.com/people/haoqiang-fan"> author </a>. </h4>
96
  <strong><h5 align="center">Notice: The output is generated by algorithm scheme and may involve some randomness. It does not represent the attitudes and opinions of any developers and AI services in this project. We do not make any guarantees about the generated content.<h5></strong>
97
  """
98
  tos_markdown = """
@@ -123,7 +120,7 @@ if __name__ == '__main__':
123
  gr.Markdown(title_markdown)
124
 
125
  with gr.Row():
126
- gr_requirement = gr.TextArea(placeholder=requirement_ph, label=requirement_label, lines=4)
127
  with gr.Row():
128
  with gr.Column():
129
  gr_question = gr.TextArea(placeholder=question_ph, label=question_label)
@@ -131,6 +128,11 @@ if __name__ == '__main__':
131
  with gr.Row():
132
  gr_submit = gr.Button(submit_label, interactive=False)
133
  gr_next = gr.Button(next_label)
 
 
 
 
 
134
 
135
  with gr.Column():
136
  gr_uuid = gr.Text(value='', visible=False)
@@ -139,6 +141,48 @@ if __name__ == '__main__':
139
  gr_explanation = gr.TextArea(label=explanation_label, lines=1)
140
  gr.Markdown(tos_markdown)
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  def _next_question(uuid_):
144
  global count
@@ -146,40 +190,56 @@ if __name__ == '__main__':
146
  uuid_ = str(uuid.uuid4())
147
  count += 1
148
  logging.info(f'Player {count} starts the game now')
149
- global _QUESTION_IDS
150
- _qid = _QUESTION_IDS.get(uuid_, -1)
 
 
 
151
  _qid += 1
152
- _QUESTION_IDS[uuid_] = _qid
153
 
154
  if _qid >= len(_QUESTIONS):
155
- del _QUESTION_IDS[uuid_]
156
  logging.info(f'Player {count} has passed the game now')
157
  return game_cleared_label, '', '', {}, '', \
158
  gr.Button(submit_label, interactive=False), \
159
  gr.Button(try_again_label, interactive=True), \
160
- ''
 
 
 
 
161
  else:
162
  executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
163
- return executor.question_text, '', '', {}, '', \
 
164
  gr.Button(submit_label, interactive=True), \
165
  gr.Button(next_label, interactive=False), \
166
- uuid_
 
 
 
 
 
 
167
 
168
  gr_next.click(
169
  fn=_next_question,
170
  inputs=[gr_uuid],
171
  outputs=[
172
  gr_requirement, gr_question, gr_answer,
173
- gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
 
174
  ],
175
  )
176
 
177
 
178
  def _submit_answer(qs_text: str, api_key: str, uuid_: str):
 
179
  if _need_api_key() and not api_key:
180
  raise gr.Error(api_error_info)
181
 
182
- _qid = _QUESTION_IDS[uuid_]
183
  executor = QuestionExecutor(
184
  _QUESTIONS[_qid], _LANG,
185
  llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {'api_key': _LLM_KEY}
@@ -187,10 +247,12 @@ if __name__ == '__main__':
187
  answer_text, correctness, explanation = executor.check(qs_text)
188
  labels = {correct_label: 1.0} if correctness else {wrong_label: 1.0}
189
  if correctness:
 
190
  return answer_text, labels, explanation, gr.Button(next_label, interactive=True), uuid_
191
  else:
192
  return answer_text, labels, explanation, gr.Button(next_label, interactive=False), uuid_
193
 
 
194
  gr_submit.click(
195
  _submit_answer,
196
  inputs=[gr_question, gr_api_key, gr_uuid],
 
1
+ import logging
2
  import os
3
  import uuid
 
4
 
5
  import gradio as gr
6
 
7
  from llmriddles.questions import QuestionExecutor
8
  from llmriddles.questions import list_ordered_questions
9
 
10
+ _QUESTION_SESSIONS = {}
11
  count = 0
12
  _QUESTIONS = list_ordered_questions()
13
  _LANG = os.environ.get('QUESTION_LANG', 'cn')
 
17
  _LLM_KEY = os.environ.get('QUESTION_LLM_KEY', None)
18
  _DEBUG = os.environ.get('DEBUG', 'false').lower() == 'true'
19
 
20
+ if _DEBUG:
21
+ logging.getLogger().setLevel(logging.INFO)
22
+ else:
23
+ logging.getLogger().setLevel(logging.WARNING)
24
  if _LANG == "cn":
 
 
 
 
25
  title = "完蛋!我被 LLM 拿捏了"
26
  requirement_ph = """
27
+ <h2 style="color: #6d28d9;"> 欢迎来到 LLM Riddles! </h2>
28
+ <h4> 你将通过本游戏对大语言模型产生更深刻的理解。在本游戏中,你需要构造一个提给语言大模型的问题,使得它回复的答案符合题目要求。点击<i>\"下一题\"</i> 即可开始游戏。</h4>
 
 
 
29
  """
30
  requirement_label = "游戏须知/说明"
31
+ question_ph = "你对大语言模型的提问(例如:请你输出1+1=3)"
32
  question_label = "玩家提问栏"
33
  answer_ph = "大语言模型的回答"
34
  answer_label = "大语言模型回答栏"
 
38
  api_label = "API key"
39
  predict_label = "结果正确性"
40
  explanation_label = "结果详细解释"
41
+ game_cleared_label = "<h2 style='color: #6d28d9;'>祝贺!你已成功通关!</h2>"
42
  correct_label = "正确"
43
  wrong_label = "错误"
44
  api_error_info = "请在提交问题之前先输入你的 API Key"
45
  try_again_label = "再玩一次"
46
+ select_label = "选择关卡(投机取巧需谨慎)"
47
  title_markdown = """
48
  <div align="center">
49
  <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
50
  </div>
51
+ <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab/LLMRiddles"> 🎭LLM Riddles:完蛋!我被 LLM 拿捏了</a></h2>
52
+ <strong><h5 align="center"> 更多不同语言模型的在线试玩 demo 可以访问 GitHub<a href="https://github.com/OpenDILab/LLMRiddles">源代码仓库</a>获取<h5></strong>
53
+ <h5 align="center"> 如果你喜欢这个项目,请给我们在 GitHub 点个 star ✨ <a href="https://github.com/OpenDILab/LLMRiddles"> 代码仓库传送门 </a> 。我们将会持续保持更新。再次感谢游戏<a href="https://www.zhihu.com/people/haoqiang-fan"> 原作者 </a>的奇思妙想! </h5>
54
  <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供娱乐。<h5></strong>
55
  """
56
  tos_markdown = """
 
64
  elif _LANG == "en":
65
  title = "LLM Riddles: Oops! Rolling in LLM."
66
  requirement_ph = """
67
+ <h2 style="color: #6d28d9;">Welcome to LLM Riddles! </h2>
68
+ <h4> In this game, you'll gain a deeper understanding of language models. Your challenge is to create a question to ask a language model in a way that the answer it provides meets specific criteria. Click <i>\'Next\'</i> to Start</h4>
 
 
 
69
  """
70
  requirement_label = "Game Requirements"
71
+ question_ph = "Your Question for LLM (e.g. Please print 1+1=3)"
72
  question_label = "Question"
73
  answer_ph = "Answer From LLM"
74
  answer_label = "Answer"
 
78
  api_label = "API key"
79
  predict_label = "Correctness"
80
  explanation_label = "Explanation"
81
+ game_cleared_label = "<h2 style='color: #6d28d9;'>Congratulations!</h2>"
82
  correct_label = "Correct"
83
  wrong_label = "Wrong"
84
  api_error_info = "Please Enter API Key Before Submitting Question."
85
  try_again_label = "Try Again"
86
+ select_label = "Select level"
87
  title_markdown = """
88
  <div align="center">
89
  <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
90
  </div>
91
+ <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab/LLMRiddles"> 🎭LLM Riddles: Oops! Rolling in LLM.</a></h2>
92
+ <h5 align="center"> If you like our project, please give us a star ✨ on GitHub for latest update <a href="https://github.com/OpenDILab/LLMRiddles"> (Code Link) </a>. Thanks for the interesting idea of the original game <a href="https://www.zhihu.com/people/haoqiang-fan"> author </a>. </h5>
93
  <strong><h5 align="center">Notice: The output is generated by algorithm scheme and may involve some randomness. It does not represent the attitudes and opinions of any developers and AI services in this project. We do not make any guarantees about the generated content.<h5></strong>
94
  """
95
  tos_markdown = """
 
120
  gr.Markdown(title_markdown)
121
 
122
  with gr.Row():
123
+ gr_requirement = gr.HTML(value=requirement_ph, label=requirement_label)
124
  with gr.Row():
125
  with gr.Column():
126
  gr_question = gr.TextArea(placeholder=question_ph, label=question_label)
 
128
  with gr.Row():
129
  gr_submit = gr.Button(submit_label, interactive=False)
130
  gr_next = gr.Button(next_label)
131
+ with gr.Row():
132
+ gr_select = gr.Radio(
133
+ choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
134
+ label=select_label
135
+ )
136
 
137
  with gr.Column():
138
  gr_uuid = gr.Text(value='', visible=False)
 
141
  gr_explanation = gr.TextArea(label=explanation_label, lines=1)
142
  gr.Markdown(tos_markdown)
143
 
144
+ def _postprocess_question_text(question_text):
145
+ if _LANG == 'cn':
146
+ idx = question_text.find(',')
147
+ question_title = question_text[:idx]
148
+ former, latter = question_title.split('(')
149
+ question_title = former + ':' + latter[:-1]
150
+ question_text = f"<h2 style='color: #6d28d9;'>{question_title}</h2><h4>{question_text[idx+1:]}</h4>"
151
+ elif _LANG == 'en':
152
+ idx = question_text.find(',')
153
+ question_text = f"<h2 style='color: #6d28d9;'>{question_text[:idx]}</h2><h4>{question_text[idx+1:]}</h4>"
154
+ return question_text
155
+
156
+
157
+ def _radio_select(uuid_, select_qid):
158
+ global count
159
+ if not uuid_:
160
+ uuid_ = str(uuid.uuid4())
161
+ count += 1
162
+ logging.info(f'Player {count} starts the game now')
163
+ global _QUESTION_SESSIONS
164
+ if uuid_ not in _QUESTION_SESSIONS:
165
+ _QUESTION_SESSIONS[uuid_] = set(), select_qid
166
+ else:
167
+ _exists, _ = _QUESTION_SESSIONS[uuid_]
168
+ _QUESTION_SESSIONS[uuid_] = _exists, select_qid
169
+
170
+ executor = QuestionExecutor(_QUESTIONS[select_qid], _LANG)
171
+ question_text = _postprocess_question_text(executor.question_text)
172
+ return question_text, '', '', {}, '', \
173
+ gr.Button(submit_label, interactive=True), \
174
+ gr.Button(next_label, interactive=False), \
175
+ uuid_
176
+
177
+ gr_select.select(
178
+ _radio_select,
179
+ inputs=[gr_uuid, gr_select],
180
+ outputs=[
181
+ gr_requirement, gr_question, gr_answer,
182
+ gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
183
+ ],
184
+ )
185
+
186
 
187
  def _next_question(uuid_):
188
  global count
 
190
  uuid_ = str(uuid.uuid4())
191
  count += 1
192
  logging.info(f'Player {count} starts the game now')
193
+ global _QUESTION_SESSIONS
194
+ if uuid_ in _QUESTION_SESSIONS:
195
+ _exists, _qid = _QUESTION_SESSIONS[uuid_]
196
+ else:
197
+ _exists, _qid = set(), -1
198
  _qid += 1
199
+ _QUESTION_SESSIONS[uuid_] = _exists, _qid
200
 
201
  if _qid >= len(_QUESTIONS):
202
+ del _QUESTION_SESSIONS[uuid_]
203
  logging.info(f'Player {count} has passed the game now')
204
  return game_cleared_label, '', '', {}, '', \
205
  gr.Button(submit_label, interactive=False), \
206
  gr.Button(try_again_label, interactive=True), \
207
+ '', \
208
+ gr.Radio(
209
+ choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
210
+ label=select_label
211
+ )
212
  else:
213
  executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
214
+ question_text = _postprocess_question_text(executor.question_text)
215
+ return question_text, '', '', {}, '', \
216
  gr.Button(submit_label, interactive=True), \
217
  gr.Button(next_label, interactive=False), \
218
+ uuid_, \
219
+ gr.Radio(
220
+ choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
221
+ value=_qid,
222
+ label=select_label,
223
+ )
224
+
225
 
226
  gr_next.click(
227
  fn=_next_question,
228
  inputs=[gr_uuid],
229
  outputs=[
230
  gr_requirement, gr_question, gr_answer,
231
+ gr_predict, gr_explanation, gr_submit, gr_next,
232
+ gr_uuid, gr_select,
233
  ],
234
  )
235
 
236
 
237
  def _submit_answer(qs_text: str, api_key: str, uuid_: str):
238
+ global _QUESTION_SESSIONS
239
  if _need_api_key() and not api_key:
240
  raise gr.Error(api_error_info)
241
 
242
+ _exists, _qid = _QUESTION_SESSIONS[uuid_]
243
  executor = QuestionExecutor(
244
  _QUESTIONS[_qid], _LANG,
245
  llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {'api_key': _LLM_KEY}
 
247
  answer_text, correctness, explanation = executor.check(qs_text)
248
  labels = {correct_label: 1.0} if correctness else {wrong_label: 1.0}
249
  if correctness:
250
+ _QUESTION_SESSIONS[uuid_] = (_exists | {_qid}), _qid
251
  return answer_text, labels, explanation, gr.Button(next_label, interactive=True), uuid_
252
  else:
253
  return answer_text, labels, explanation, gr.Button(next_label, interactive=False), uuid_
254
 
255
+
256
  gr_submit.click(
257
  _submit_answer,
258
  inputs=[gr_question, gr_api_key, gr_uuid],
llmriddles/questions/executor.py CHANGED
@@ -15,6 +15,10 @@ class QuestionExecutor:
15
  def question_text(self):
16
  return self.question.texts[self.lang]
17
 
 
 
 
 
18
  def check(self, qs_text: str) -> Tuple[str, bool, str]:
19
  answer_text = get_llm_fn(self.llm)(qs_text, **self.llm_cfgs)
20
  correct, explanation = self.check_answer(qs_text, answer_text)
 
15
  def question_text(self):
16
  return self.question.texts[self.lang]
17
 
18
+ @property
19
+ def question_name(self):
20
+ return self.question.names[self.lang]
21
+
22
  def check(self, qs_text: str) -> Tuple[str, bool, str]:
23
  answer_text = get_llm_fn(self.llm)(qs_text, **self.llm_cfgs)
24
  correct, explanation = self.check_answer(qs_text, answer_text)
llmriddles/questions/level1.py CHANGED
@@ -1,14 +1,18 @@
1
  from .question import register_question
2
 
 
3
  def count_english_words(text: str):
4
  return len(text.split(' '))
5
 
 
6
  def count_chinese_words(text: str):
7
  return len(text)
8
 
 
9
  def check_if_chinese(text: str):
10
  return all('\u4e00' <= char <= '\u9fff' for char in text)
11
 
 
12
  def count_words(text: str, contain_punctuation: bool = False):
13
  chinese_words = []
14
  english_words = []
@@ -29,9 +33,9 @@ def count_words(text: str, contain_punctuation: bool = False):
29
  temp_english_words = []
30
  other_words.append(char)
31
  if contain_punctuation:
32
- return len(chinese_words)+len(english_words)+len(other_words)
33
  else:
34
- return len(chinese_words)+len(english_words)
35
 
36
 
37
  CN_TEXT_1 = """
@@ -57,11 +61,14 @@ def _checker_1(question_text: str, user_text: str, answer_text: str, lang: str):
57
  return False, None
58
 
59
 
60
- register_question({
61
- 'cn': CN_TEXT_1,
62
- 'en': EN_TEXT_1,
63
- }, _checker_1)
64
-
 
 
 
65
 
66
  CN_TEXT_2 = """
67
  第一章第二题(小试牛刀),请你输入三个字(及)以内的问题,使模型的回答在30个字以上。
@@ -89,11 +96,14 @@ def _checker_2(question_text: str, user_text: str, answer_text: str, lang: str):
89
  return True, None
90
 
91
 
92
- register_question({
93
- 'cn': CN_TEXT_2,
94
- 'en': EN_TEXT_2,
95
- }, _checker_2)
96
-
 
 
 
97
 
98
  CN_TEXT_3 = """
99
  第一章第三题(短说长话),请你输入一个字的问题,使模型的回答在100个字以上。
@@ -107,6 +117,7 @@ For the third question in chapter 1, please enter a one-word question so that th
107
  Please enter your query below and click the submit button
108
  """
109
 
 
110
  def _checker_3(question_text: str, user_text: str, answer_text: str, lang: str):
111
  _ = question_text, lang
112
  answer_text = answer_text.strip()
@@ -119,11 +130,15 @@ def _checker_3(question_text: str, user_text: str, answer_text: str, lang: str):
119
  else:
120
  return True, None
121
 
122
- register_question({
123
- 'cn': CN_TEXT_3,
124
- 'en': EN_TEXT_3,
125
- }, _checker_3)
126
 
 
 
 
 
 
 
 
 
127
 
128
  CN_TEXT_4 = """
129
  第一章第四题(短说短话),请输入一个字的问题,使模型的回答字数小于20个字。
@@ -137,6 +152,7 @@ For the fourth question in chapter 1, please enter a one-word question so that t
137
  Please enter your query below and click the submit button
138
  """
139
 
 
140
  def _checker_4(question_text: str, user_text: str, answer_text: str, lang: str):
141
  _ = question_text, lang
142
  answer_text = answer_text.strip()
@@ -145,15 +161,19 @@ def _checker_4(question_text: str, user_text: str, answer_text: str, lang: str):
145
  if count_words(user_text) > 1:
146
  return False, "用户的问题长度应该在一个字及以内" if lang == 'cn' else 'Question should be one word.'
147
  elif count_words(answer_text) >= 20:
148
- return False, "大语言模型的答案应该小于100个字" if lang == 'cn' else 'Answer should be less than 20 words.'
149
  else:
150
  return True, None
151
 
152
- register_question({
153
- 'cn': CN_TEXT_4,
154
- 'en': EN_TEXT_4,
155
- }, _checker_4)
156
 
 
 
 
 
 
 
 
 
157
 
158
  # CN_TEXT_5 = """
159
  # 第一章第五题(回文不变),请输入一个本身不是回文串的问题,使无论正着问还是倒着问,模型的回答是一样的。
 
1
  from .question import register_question
2
 
3
+
4
  def count_english_words(text: str):
5
  return len(text.split(' '))
6
 
7
+
8
  def count_chinese_words(text: str):
9
  return len(text)
10
 
11
+
12
  def check_if_chinese(text: str):
13
  return all('\u4e00' <= char <= '\u9fff' for char in text)
14
 
15
+
16
  def count_words(text: str, contain_punctuation: bool = False):
17
  chinese_words = []
18
  english_words = []
 
33
  temp_english_words = []
34
  other_words.append(char)
35
  if contain_punctuation:
36
+ return len(chinese_words) + len(english_words) + len(other_words)
37
  else:
38
+ return len(chinese_words) + len(english_words)
39
 
40
 
41
  CN_TEXT_1 = """
 
61
  return False, None
62
 
63
 
64
+ register_question(
65
+ {
66
+ 'cn': CN_TEXT_1,
67
+ 'en': EN_TEXT_1,
68
+ },
69
+ checkers=_checker_1,
70
+ name={'cn': '1-1 初来乍到', 'en': '1-1'},
71
+ )
72
 
73
  CN_TEXT_2 = """
74
  第一章第二题(小试牛刀),请你输入三个字(及)以内的问题,使模型的回答在30个字以上。
 
96
  return True, None
97
 
98
 
99
+ register_question(
100
+ {
101
+ 'cn': CN_TEXT_2,
102
+ 'en': EN_TEXT_2,
103
+ },
104
+ checkers=_checker_2,
105
+ name={'cn': '1-2 小试牛刀', 'en': '1-2'},
106
+ )
107
 
108
  CN_TEXT_3 = """
109
  第一章第三题(短说长话),请你输入一个字的问题,使模型的回答在100个字以上。
 
117
  Please enter your query below and click the submit button
118
  """
119
 
120
+
121
  def _checker_3(question_text: str, user_text: str, answer_text: str, lang: str):
122
  _ = question_text, lang
123
  answer_text = answer_text.strip()
 
130
  else:
131
  return True, None
132
 
 
 
 
 
133
 
134
+ register_question(
135
+ {
136
+ 'cn': CN_TEXT_3,
137
+ 'en': EN_TEXT_3,
138
+ },
139
+ checkers=_checker_3,
140
+ name={'cn': '1-3 短说长话', 'en': '1-3'}
141
+ )
142
 
143
  CN_TEXT_4 = """
144
  第一章第四题(短说短话),请输入一个字的问题,使模型的回答字数小于20个字。
 
152
  Please enter your query below and click the submit button
153
  """
154
 
155
+
156
  def _checker_4(question_text: str, user_text: str, answer_text: str, lang: str):
157
  _ = question_text, lang
158
  answer_text = answer_text.strip()
 
161
  if count_words(user_text) > 1:
162
  return False, "用户的问题长度应该在一个字及以内" if lang == 'cn' else 'Question should be one word.'
163
  elif count_words(answer_text) >= 20:
164
+ return False, "大语言模型的答案应该小于20个字" if lang == 'cn' else 'Answer should be less than 20 words.'
165
  else:
166
  return True, None
167
 
 
 
 
 
168
 
169
+ register_question(
170
+ {
171
+ 'cn': CN_TEXT_4,
172
+ 'en': EN_TEXT_4,
173
+ },
174
+ checkers=_checker_4,
175
+ name={'cn': '1-4 短说短话', 'en': '1-4'},
176
+ )
177
 
178
  # CN_TEXT_5 = """
179
  # 第一章第五题(回文不变),请输入一个本身不是回文串的问题,使无论正着问还是倒着问,模型的回答是一样的。
llmriddles/questions/level2.py CHANGED
@@ -54,13 +54,18 @@ def _en_checker_1(question_text: str, user_text: str, answer_text: str) -> Tuple
54
  return True, None
55
 
56
 
57
- register_question({
58
- 'cn': CN_TEXT_1,
59
- 'en': EN_TEXT_1,
60
- }, checkers={
61
- 'cn': _cn_checker_1,
62
- 'en': _en_checker_1,
63
- })
 
 
 
 
 
64
 
65
  CN_TEXT_2 = """
66
  第二章第二题(越说越大),请输入一个大于一的正整数作为问题,使回答里包含至少比它大一千的数。
@@ -102,13 +107,18 @@ def _en_checker_2(question_text: str, user_text: str, answer_text: str) -> Tuple
102
  return False, f'Did not detect a number of at least {value + 1000} in the output'
103
 
104
 
105
- register_question({
106
- 'cn': CN_TEXT_2,
107
- 'en': EN_TEXT_2,
108
- }, checkers={
109
- 'cn': _cn_checker_2,
110
- 'en': _en_checker_2,
111
- })
 
 
 
 
 
112
 
113
  CN_TEXT_3 = """
114
  第二章第三题(越说越小),请输入一个大于一的正整数作为问题,使回答里包含至少10个不同的至少比它小一千的自然数。
@@ -161,13 +171,18 @@ def _en_checker_3(question_text: str, user_text: str, answer_text: str) -> Tuple
161
  f'but it doesn\'t reach 10: {collected_values!r}'
162
 
163
 
164
- register_question({
165
- 'cn': CN_TEXT_3,
166
- 'en': EN_TEXT_3,
167
- }, checkers={
168
- 'cn': _cn_checker_3,
169
- 'en': _en_checker_3,
170
- })
 
 
 
 
 
171
 
172
  CN_TEXT_4 = """
173
  第二章第四题(警世名言),请在不提及1,4,5这三个字符的情况下让模型回答114514,不要有多余的字符。
@@ -191,13 +206,18 @@ def _en_checker_4(question_text: str, user_text: str, answer_text: str) -> Tuple
191
  return answer_text.strip() == '114514', None
192
 
193
 
194
- register_question({
195
- 'cn': CN_TEXT_4,
196
- 'en': EN_TEXT_4,
197
- }, checkers={
198
- 'cn': _cn_checker_4,
199
- 'en': _en_checker_4,
200
- })
 
 
 
 
 
201
 
202
  CN_TEXT_5 = """
203
  第二章第五题(开平方数),请输入一个大于一的平方数作为问题,使回答里包含它的平方根对应的数。
@@ -245,13 +265,18 @@ def _en_checker_5(question_text: str, user_text: str, answer_text: str) -> Tuple
245
  return False, f'Square root {sq} not detected'
246
 
247
 
248
- register_question({
249
- 'cn': CN_TEXT_5,
250
- 'en': EN_TEXT_5,
251
- }, checkers={
252
- 'cn': _cn_checker_5,
253
- 'en': _en_checker_5,
254
- })
 
 
 
 
 
255
 
256
  CN_TEXT_6 = """
257
  第二章第六题(得寸进狗),请提一个不包含“狗”这个字的10个字以内的问题,使回答中“狗”这个字出现的次数至少是问题字数的2倍。
@@ -290,10 +315,15 @@ def _en_checker_6(question_text: str, user_text: str, answer_text: str) -> Tuple
290
  f'which is less than {len(q_words) * 2} times.'
291
 
292
 
293
- register_question({
294
- 'cn': CN_TEXT_6,
295
- 'en': EN_TEXT_6,
296
- }, checkers={
297
- 'cn': _cn_checker_6,
298
- 'en': _en_checker_6,
299
- })
 
 
 
 
 
 
54
  return True, None
55
 
56
 
57
+ register_question(
58
+ {
59
+ 'cn': CN_TEXT_1,
60
+ 'en': EN_TEXT_1,
61
+ },
62
+ checkers={
63
+ 'cn': _cn_checker_1,
64
+ 'en': _en_checker_1,
65
+ },
66
+ name={'cn': '2-1 质数长度', 'en': '2-1'},
67
+ level=2
68
+ )
69
 
70
  CN_TEXT_2 = """
71
  第二章第二题(越说越大),请输入一个大于一的正整数作为问题,使回答里包含至少比它大一千的数。
 
107
  return False, f'Did not detect a number of at least {value + 1000} in the output'
108
 
109
 
110
+ register_question(
111
+ {
112
+ 'cn': CN_TEXT_2,
113
+ 'en': EN_TEXT_2,
114
+ },
115
+ checkers={
116
+ 'cn': _cn_checker_2,
117
+ 'en': _en_checker_2,
118
+ },
119
+ name={'cn': '2-2 越说越大', 'en': '2-2'},
120
+ level=2
121
+ )
122
 
123
  CN_TEXT_3 = """
124
  第二章第三题(越说越小),请输入一个大于一的正整数作为问题,使回答里包含至少10个不同的至少比它小一千的自然数。
 
171
  f'but it doesn\'t reach 10: {collected_values!r}'
172
 
173
 
174
+ register_question(
175
+ {
176
+ 'cn': CN_TEXT_3,
177
+ 'en': EN_TEXT_3,
178
+ },
179
+ checkers={
180
+ 'cn': _cn_checker_3,
181
+ 'en': _en_checker_3,
182
+ },
183
+ name={'cn': '2-3 越说越小', 'en': '2-3'},
184
+ level=2,
185
+ )
186
 
187
  CN_TEXT_4 = """
188
  第二章第四题(警世名言),请在不提及1,4,5这三个字符的情况下让模型回答114514,不要有多余的字符。
 
206
  return answer_text.strip() == '114514', None
207
 
208
 
209
+ register_question(
210
+ {
211
+ 'cn': CN_TEXT_4,
212
+ 'en': EN_TEXT_4,
213
+ },
214
+ checkers={
215
+ 'cn': _cn_checker_4,
216
+ 'en': _en_checker_4,
217
+ },
218
+ name={'cn': '2-4 警世名言', 'en': '2-4'},
219
+ level=2,
220
+ )
221
 
222
  CN_TEXT_5 = """
223
  第二章第五题(开平方数),请输入一个大于一的平方数作为问题,使回答里包含它的平方根对应的数。
 
265
  return False, f'Square root {sq} not detected'
266
 
267
 
268
+ register_question(
269
+ {
270
+ 'cn': CN_TEXT_5,
271
+ 'en': EN_TEXT_5,
272
+ },
273
+ checkers={
274
+ 'cn': _cn_checker_5,
275
+ 'en': _en_checker_5,
276
+ },
277
+ name={'cn': '2-5 开平方数', 'en': '2-5'},
278
+ level=2,
279
+ )
280
 
281
  CN_TEXT_6 = """
282
  第二章第六题(得寸进狗),请提一个不包含“狗”这个字的10个字以内的问题,使回答中“狗”这个字出现的次数至少是问题字数的2倍。
 
315
  f'which is less than {len(q_words) * 2} times.'
316
 
317
 
318
+ register_question(
319
+ {
320
+ 'cn': CN_TEXT_6,
321
+ 'en': EN_TEXT_6,
322
+ },
323
+ checkers={
324
+ 'cn': _cn_checker_6,
325
+ 'en': _en_checker_6,
326
+ },
327
+ name={'cn': '2-6 得寸进狗', 'en': '2-6'},
328
+ level=2
329
+ )
llmriddles/questions/level3.py CHANGED
@@ -1,5 +1,6 @@
1
  from .question import register_question
2
 
 
3
  def count_words(text: str, contain_punctuation: bool = False):
4
  chinese_words = []
5
  english_words = []
@@ -20,9 +21,10 @@ def count_words(text: str, contain_punctuation: bool = False):
20
  temp_english_words = []
21
  other_words.append(char)
22
  if contain_punctuation:
23
- return len(chinese_words)+len(english_words)+len(other_words)
24
  else:
25
- return len(chinese_words)+len(english_words)
 
26
 
27
  CN_TEXT_1 = """
28
  第三章第一题(自说自话),请你输入一个至少10个字的提问,使模型的回答和提问完全一样。
@@ -36,23 +38,30 @@ For the first question in chapter 3, please enter a question of at least ten wor
36
  Please enter your query below and click the submit button
37
  """
38
 
 
39
  def _checker_1(question_text: str, user_text: str, answer_text: str, lang: str):
40
  _ = question_text, lang
41
  answer_text = answer_text.strip()
42
  user_text = user_text.strip()
43
 
44
  if count_words(user_text) < 10:
45
- return False, "用户的问题长度应该至少10个字" if lang=='cn' else 'Question should be no less than 10 words.'
46
 
47
  if answer_text == user_text:
48
  return True, None
49
  else:
50
  return False, None
51
 
52
- register_question({
53
- 'cn': CN_TEXT_1,
54
- 'en': EN_TEXT_1,
55
- }, _checker_1, level=3)
 
 
 
 
 
 
56
 
57
  CN_TEXT_2 = """
58
  第三章第二题(话自说自),请你输入一个至少10个字的提问,使模型的回答是问题的反序。
@@ -66,15 +75,16 @@ For the second question in chapter 3, please enter a question of at least ten wo
66
  Please enter your query below and click the submit button
67
  """
68
 
 
69
  def _checker_2(question_text: str, user_text: str, answer_text: str, lang: str):
70
  _ = question_text, lang
71
  answer_text = answer_text.strip()
72
  user_text = user_text.strip()
73
 
74
  if count_words(user_text) < 10:
75
- return False, "用户的问题长度应该至少10个字" if lang=='cn' else 'Question should be no less than 10 words.'
76
 
77
- if lang=='cn':
78
  user_text = user_text[::-1]
79
  else:
80
  words = user_text.split()
@@ -86,10 +96,16 @@ def _checker_2(question_text: str, user_text: str, answer_text: str, lang: str):
86
  else:
87
  return False, None
88
 
89
- register_question({
90
- 'cn': CN_TEXT_2,
91
- 'en': EN_TEXT_2,
92
- }, _checker_2, level=3)
 
 
 
 
 
 
93
 
94
  CN_TEXT_3 = """
95
  第三章第三题(就是敢说),请你输入一个不包含“1”和“3”的提问,使模型的回答是一字不差的“1+1=3”(不需要引号)。
@@ -103,23 +119,30 @@ For the third question in chapter 3, please enter a question not contain "1" or
103
  Please enter your query below and click the submit button
104
  """
105
 
 
106
  def _checker_3(question_text: str, user_text: str, answer_text: str, lang: str):
107
  _ = question_text, lang
108
  answer_text = answer_text.strip()
109
  user_text = user_text.strip()
110
 
111
  if '1' in user_text or '3' in user_text:
112
- return False, "用户的问题不能包含“1”或“3”" if lang=='cn' else 'Question should not contain \"1\" or \"3\".'
113
 
114
  if answer_text == '1+1=3':
115
  return True, None
116
  else:
117
  return False, None
118
 
119
- register_question({
120
- 'cn': CN_TEXT_3,
121
- 'en': EN_TEXT_3,
122
- }, _checker_3, level=3)
 
 
 
 
 
 
123
 
124
  # CN_TEXT_4 = """
125
  # 第三章第四题(回文协变),请你输入一个本身不是回文串的问题,使得正着问和倒着问时,模型的回答本身不是回文且也是逆序。
 
1
  from .question import register_question
2
 
3
+
4
  def count_words(text: str, contain_punctuation: bool = False):
5
  chinese_words = []
6
  english_words = []
 
21
  temp_english_words = []
22
  other_words.append(char)
23
  if contain_punctuation:
24
+ return len(chinese_words) + len(english_words) + len(other_words)
25
  else:
26
+ return len(chinese_words) + len(english_words)
27
+
28
 
29
  CN_TEXT_1 = """
30
  第三章第一题(自说自话),请你输入一个至少10个字的提问,使模型的回答和提问完全一样。
 
38
  Please enter your query below and click the submit button
39
  """
40
 
41
+
42
  def _checker_1(question_text: str, user_text: str, answer_text: str, lang: str):
43
  _ = question_text, lang
44
  answer_text = answer_text.strip()
45
  user_text = user_text.strip()
46
 
47
  if count_words(user_text) < 10:
48
+ return False, "用户的问题长度应该至少10个字" if lang == 'cn' else 'Question should be no less than 10 words.'
49
 
50
  if answer_text == user_text:
51
  return True, None
52
  else:
53
  return False, None
54
 
55
+
56
+ register_question(
57
+ {
58
+ 'cn': CN_TEXT_1,
59
+ 'en': EN_TEXT_1,
60
+ },
61
+ checkers=_checker_1,
62
+ name={'cn': '3-1 自说自话', 'en': '3-1'},
63
+ level=3,
64
+ )
65
 
66
  CN_TEXT_2 = """
67
  第三章第二题(话自说自),请你输入一个至少10个字的提问,使模型的回答是问题的反序。
 
75
  Please enter your query below and click the submit button
76
  """
77
 
78
+
79
  def _checker_2(question_text: str, user_text: str, answer_text: str, lang: str):
80
  _ = question_text, lang
81
  answer_text = answer_text.strip()
82
  user_text = user_text.strip()
83
 
84
  if count_words(user_text) < 10:
85
+ return False, "用户的问题长度应该至少10个字" if lang == 'cn' else 'Question should be no less than 10 words.'
86
 
87
+ if lang == 'cn':
88
  user_text = user_text[::-1]
89
  else:
90
  words = user_text.split()
 
96
  else:
97
  return False, None
98
 
99
+
100
+ register_question(
101
+ {
102
+ 'cn': CN_TEXT_2,
103
+ 'en': EN_TEXT_2,
104
+ },
105
+ checkers=_checker_2,
106
+ name={'cn': '3-2 话自说自', 'en': '3-2'},
107
+ level=3,
108
+ )
109
 
110
  CN_TEXT_3 = """
111
  第三章第三题(就是敢说),请你输入一个不包含“1”和“3”的提问,使模型的回答是一字不差的“1+1=3”(不需要引号)。
 
119
  Please enter your query below and click the submit button
120
  """
121
 
122
+
123
  def _checker_3(question_text: str, user_text: str, answer_text: str, lang: str):
124
  _ = question_text, lang
125
  answer_text = answer_text.strip()
126
  user_text = user_text.strip()
127
 
128
  if '1' in user_text or '3' in user_text:
129
+ return False, "用户的问题不能包含“1”或“3”" if lang == 'cn' else 'Question should not contain \"1\" or \"3\".'
130
 
131
  if answer_text == '1+1=3':
132
  return True, None
133
  else:
134
  return False, None
135
 
136
+
137
+ register_question(
138
+ {
139
+ 'cn': CN_TEXT_3,
140
+ 'en': EN_TEXT_3,
141
+ },
142
+ checkers=_checker_3,
143
+ name={'cn': '3-3 就是敢说', 'en': '3-3'},
144
+ level=3,
145
+ )
146
 
147
  # CN_TEXT_4 = """
148
  # 第三章第四题(回文协变),请你输入一个本身不是回文串的问题,使得正着问和倒着问时,模型的回答本身不是回文且也是逆序。
llmriddles/questions/level4.py CHANGED
@@ -1,6 +1,7 @@
1
- from .question import register_question
2
  import re
3
 
 
 
4
 
5
  def check_if_is_number(text: str):
6
  try:
@@ -85,13 +86,19 @@ def _checker_3(question_text: str, user_text: str, answer_text: str, lang: str):
85
  return False, "问题应该是一个正整数" if lang == 'cn' else 'Question should be a positive integer.'
86
  elif int(question_text) == 1:
87
  return False, "问题应该是一个大于1的正整数" if lang == 'cn' else 'Question should be a positive integer greater than 1.'
88
- elif int(question_text)-1 not in get_all_numbers_in_a_sentence(answer_text) or int(question_text)+1 not in get_all_numbers_in_a_sentence(answer_text):
 
89
  return False, "回答中应该包含一个与问题相差1的数字" if lang == 'cn' else 'Answer should contain a number that is exactly 1 different from the question.'
90
  else:
91
  return True, None
92
 
93
 
94
- register_question({
95
- 'cn': CN_TEXT_3,
96
- 'en': EN_TEXT_3,
97
- }, _checker_3, level=4)
 
 
 
 
 
 
 
1
  import re
2
 
3
+ from .question import register_question
4
+
5
 
6
  def check_if_is_number(text: str):
7
  try:
 
86
  return False, "问题应该是一个正整数" if lang == 'cn' else 'Question should be a positive integer.'
87
  elif int(question_text) == 1:
88
  return False, "问题应该是一个大于1的正整数" if lang == 'cn' else 'Question should be a positive integer greater than 1.'
89
+ elif int(question_text) - 1 not in get_all_numbers_in_a_sentence(answer_text) or int(
90
+ question_text) + 1 not in get_all_numbers_in_a_sentence(answer_text):
91
  return False, "回答中应该包含一个与问题相差1的数字" if lang == 'cn' else 'Answer should contain a number that is exactly 1 different from the question.'
92
  else:
93
  return True, None
94
 
95
 
96
+ register_question(
97
+ {
98
+ 'cn': CN_TEXT_3,
99
+ 'en': EN_TEXT_3,
100
+ },
101
+ checkers=_checker_3,
102
+ name={'cn': '4-3 自然之密', 'en': '4-3'},
103
+ level=4,
104
+ )
llmriddles/questions/level5.py CHANGED
@@ -1,5 +1,6 @@
1
  from .question import register_question
2
 
 
3
  def count_words(text: str, contain_punctuation: bool = False):
4
  chinese_words = []
5
  english_words = []
@@ -20,12 +21,13 @@ def count_words(text: str, contain_punctuation: bool = False):
20
  temp_english_words = []
21
  other_words.append(char)
22
  if contain_punctuation:
23
- return len(chinese_words)+len(english_words)+len(other_words)
24
  else:
25
- return len(chinese_words)+len(english_words)
 
26
 
27
  CN_TEXT_1 = """
28
- 第五章第一题(口是心非)请构造一个不少于十个字的问题,使得回答中不包含问题中的任意字符。
29
 
30
  请在下面的输入框内填写你的提问并点击按钮提交。
31
  """
@@ -36,21 +38,27 @@ For the first question in chapter 5, Please construct a question of no less than
36
  Please enter your query below and click the submit button
37
  """
38
 
 
39
  def _checker_1(question_text: str, user_text: str, answer_text: str, lang: str):
40
  _ = question_text, lang
41
  answer_text = answer_text.strip()
42
  user_text = user_text.strip()
43
 
44
  if count_words(user_text) < 10:
45
- return False, "用户的问题长度应该至少10个字" if lang=='cn' else 'Question should be no less than 10 words.'
46
 
47
  if answer_text == user_text:
48
  return True, None
49
  else:
50
  return False, None
51
 
52
- register_question({
53
- 'cn': CN_TEXT_1,
54
- 'en': EN_TEXT_1,
55
- }, _checker_1, level=5)
56
 
 
 
 
 
 
 
 
 
 
 
1
  from .question import register_question
2
 
3
+
4
  def count_words(text: str, contain_punctuation: bool = False):
5
  chinese_words = []
6
  english_words = []
 
21
  temp_english_words = []
22
  other_words.append(char)
23
  if contain_punctuation:
24
+ return len(chinese_words) + len(english_words) + len(other_words)
25
  else:
26
+ return len(chinese_words) + len(english_words)
27
+
28
 
29
  CN_TEXT_1 = """
30
+ 第五章第一题(口是心非),请构造一个不少于十个字的问题,使得回答中不包含问题中的任意字符。
31
 
32
  请在下面的输入框内填写你的提问并点击按钮提交。
33
  """
 
38
  Please enter your query below and click the submit button
39
  """
40
 
41
+
42
  def _checker_1(question_text: str, user_text: str, answer_text: str, lang: str):
43
  _ = question_text, lang
44
  answer_text = answer_text.strip()
45
  user_text = user_text.strip()
46
 
47
  if count_words(user_text) < 10:
48
+ return False, "用户的问题长度应该至少10个字" if lang == 'cn' else 'Question should be no less than 10 words.'
49
 
50
  if answer_text == user_text:
51
  return True, None
52
  else:
53
  return False, None
54
 
 
 
 
 
55
 
56
+ register_question(
57
+ {
58
+ 'cn': CN_TEXT_1,
59
+ 'en': EN_TEXT_1,
60
+ },
61
+ checkers=_checker_1,
62
+ name={'cn': '5-1 口是心非', 'en': '5-1'},
63
+ level=5,
64
+ )
llmriddles/questions/question.py CHANGED
@@ -3,14 +3,15 @@ from dataclasses import dataclass
3
  from typing import Union, Mapping, Literal, Callable, Tuple, List, Optional
4
 
5
  LangTyping = Literal['en', 'cn']
6
- MultiLangCheckerTyping = Callable[[str, str, str], Tuple[bool, Optional[str]]]
7
- SingleLangCheckerTyping = Callable[[str, str], Tuple[bool, Optional[str]]]
8
 
9
 
10
  @dataclass
11
  class Question:
12
  texts: Mapping[str, str]
13
  checker: MultiLangCheckerTyping
 
14
  level: int
15
 
16
 
@@ -19,6 +20,7 @@ _KNOWN_PROBLEMS = []
19
 
20
  def register_question(text: Union[Mapping[str, str], str],
21
  checkers: Union[Mapping[str, SingleLangCheckerTyping], MultiLangCheckerTyping],
 
22
  level: int = 1, default_lang='cn'):
23
  if isinstance(checkers, collections.abc.Mapping):
24
  _origin_checkers = checkers
@@ -35,7 +37,12 @@ def register_question(text: Union[Mapping[str, str], str],
35
  else:
36
  texts = text
37
 
38
- _KNOWN_PROBLEMS.append(Question(texts, checker, level))
 
 
 
 
 
39
 
40
 
41
  def list_ordered_questions() -> List[Question]:
 
3
  from typing import Union, Mapping, Literal, Callable, Tuple, List, Optional
4
 
5
  LangTyping = Literal['en', 'cn']
6
+ MultiLangCheckerTyping = Callable[[str, str, str, str], Tuple[bool, Optional[str]]]
7
+ SingleLangCheckerTyping = Callable[[str, str, str], Tuple[bool, Optional[str]]]
8
 
9
 
10
  @dataclass
11
  class Question:
12
  texts: Mapping[str, str]
13
  checker: MultiLangCheckerTyping
14
+ names: Mapping[str, str]
15
  level: int
16
 
17
 
 
20
 
21
  def register_question(text: Union[Mapping[str, str], str],
22
  checkers: Union[Mapping[str, SingleLangCheckerTyping], MultiLangCheckerTyping],
23
+ name=Union[Mapping[str, str], str],
24
  level: int = 1, default_lang='cn'):
25
  if isinstance(checkers, collections.abc.Mapping):
26
  _origin_checkers = checkers
 
37
  else:
38
  texts = text
39
 
40
+ if isinstance(name, str):
41
+ names = {default_lang: name}
42
+ else:
43
+ names = name
44
+
45
+ _KNOWN_PROBLEMS.append(Question(texts, checker, names, level))
46
 
47
 
48
  def list_ordered_questions() -> List[Question]: