|
|
|
|
|
import glob |
|
import os |
|
|
|
import PIL.Image as Image |
|
import cv2 |
|
import numpy as np |
|
import tqdm |
|
import shutil |
|
|
|
|
|
from saicinpainting.evaluation.utils import load_yaml |
|
|
|
|
|
def generate_masks_for_img(infile, outmask_pattern, mask_size=200, step=0.5): |
|
inimg = Image.open(infile) |
|
width, height = inimg.size |
|
step_abs = int(mask_size * step) |
|
|
|
mask = np.zeros((height, width), dtype='uint8') |
|
mask_i = 0 |
|
|
|
for start_vertical in range(0, height - step_abs, step_abs): |
|
for start_horizontal in range(0, width - step_abs, step_abs): |
|
mask[start_vertical:start_vertical + mask_size, start_horizontal:start_horizontal + mask_size] = 255 |
|
|
|
cv2.imwrite(outmask_pattern.format(mask_i), mask) |
|
|
|
mask[start_vertical:start_vertical + mask_size, start_horizontal:start_horizontal + mask_size] = 0 |
|
mask_i += 1 |
|
|
|
|
|
def main(args): |
|
if not args.indir.endswith('/'): |
|
args.indir += '/' |
|
if not args.outdir.endswith('/'): |
|
args.outdir += '/' |
|
|
|
config = load_yaml(args.config) |
|
|
|
in_files = list(glob.glob(os.path.join(args.indir, '**', f'*{config.img_ext}'), recursive=True)) |
|
for infile in tqdm.tqdm(in_files): |
|
outimg = args.outdir + infile[len(args.indir):] |
|
outmask_pattern = outimg[:-len(config.img_ext)] + '_mask{:04d}.png' |
|
|
|
os.makedirs(os.path.dirname(outimg), exist_ok=True) |
|
shutil.copy2(infile, outimg) |
|
|
|
generate_masks_for_img(infile, outmask_pattern, **config.gen_kwargs) |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
aparser = argparse.ArgumentParser() |
|
aparser.add_argument('config', type=str, help='Path to config for dataset generation') |
|
aparser.add_argument('indir', type=str, help='Path to folder with images') |
|
aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to') |
|
|
|
main(aparser.parse_args()) |
|
|