# Copyright (C) 2023, Tri Dao. import math import torch import pytest from einops import rearrange from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_ref from causal_conv1d.causal_conv1d_interface import causal_conv1d_update, causal_conv1d_update_ref @pytest.mark.parametrize("channel_last", [False, True]) # @pytest.mark.parametrize('channel_last', [True]) @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16]) # @pytest.mark.parametrize('itype', [torch.float16]) @pytest.mark.parametrize("silu_activation", [False, True]) # @pytest.mark.parametrize('silu_activation', [True]) @pytest.mark.parametrize("has_bias", [False, True]) # @pytest.mark.parametrize('has_bias', [True]) @pytest.mark.parametrize("width", [2, 3, 4]) # @pytest.mark.parametrize('width', [2]) @pytest.mark.parametrize( "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096] ) # @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096]) # @pytest.mark.parametrize('seqlen', [128]) def test_causal_conv1d(seqlen, width, has_bias, silu_activation, itype, channel_last): device = "cuda" rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: rtol, atol = 1e-2, 5e-2 rtolw, atolw = (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 2 # batch_size = 1 dim = 4096 + 32 # Try dim not divisible by 64 # dim = 64 if not channel_last: x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_() else: x = rearrange( torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s" ).requires_grad_() weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True) if has_bias: bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True) else: bias = None x_ref = x.detach().clone().requires_grad_() weight_ref = weight.detach().clone().requires_grad_() bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None activation = None if not silu_activation else "silu" out = causal_conv1d_fn(x, weight, bias, activation=activation) out_ref = causal_conv1d_ref(x_ref, weight_ref, bias_ref, activation=activation) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) g = torch.randn_like(out) out_ref.backward(g) out.backward(g) print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}") print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}") if has_bias: print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}") assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol) assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw) if has_bias: assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw) @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16]) # @pytest.mark.parametrize('itype', [torch.float16]) @pytest.mark.parametrize("silu_activation", [False, True]) # @pytest.mark.parametrize('silu_activation', [False]) @pytest.mark.parametrize("has_bias", [False, True]) # @pytest.mark.parametrize('has_bias', [True]) @pytest.mark.parametrize("width", [2, 3, 4]) # @pytest.mark.parametrize('width', [2]) @pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096]) # @pytest.mark.parametrize("dim", [2048]) def test_causal_conv1d_update(dim, width, has_bias, silu_activation, itype): device = "cuda" rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3) if itype == torch.bfloat16: rtol, atol = 1e-2, 5e-2 rtolw, atolw = (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 2 # batch_size = 1 # dim = 64 x = torch.randn(batch_size, dim, device=device, dtype=itype) conv_state = torch.randn(batch_size, dim, width, device=device, dtype=itype) weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True) if has_bias: bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True) else: bias = None conv_state_ref = conv_state.detach().clone() activation = None if not silu_activation else "silu" out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation) out_ref = causal_conv1d_update_ref(x, conv_state_ref, weight, bias, activation=activation) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") assert torch.equal(conv_state, conv_state_ref) assert torch.allclose(out, out_ref, rtol=rtol, atol=atol) # @pytest.mark.parametrize("channel_last", [False, True]) @pytest.mark.parametrize('channel_last', [True]) # @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16]) @pytest.mark.parametrize('itype', [torch.bfloat16]) # @pytest.mark.parametrize("silu_activation", [False, True]) @pytest.mark.parametrize('silu_activation', [True]) # @pytest.mark.parametrize("has_bias", [False, True]) @pytest.mark.parametrize('has_bias', [True]) # @pytest.mark.parametrize("width", [2, 3, 4]) @pytest.mark.parametrize('width', [4]) @pytest.mark.parametrize( # "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096] "seqlen", [2048] ) # @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096]) # @pytest.mark.parametrize('seqlen', [128]) def test_causal_conv1d_race_condition(seqlen, width, has_bias, silu_activation, itype, channel_last): device = "cuda" # set seed torch.random.manual_seed(0) batch_size = 2 # batch_size = 1 dim = 4096 + 32 # Try dim not divisible by 64 # dim = 64 if not channel_last: x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_() else: x = rearrange( torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s" ).requires_grad_() weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True) if has_bias: bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True) else: bias = None activation = None if not silu_activation else "silu" out0 = causal_conv1d_fn(x, weight, bias, activation=activation) g = torch.randn_like(out0) dx0, dw0, db0 = torch.autograd.grad(out0, (x, weight, bias), g) dw_atol = 1e-4 db_atol = 1e-4 for i in range(10000): out = causal_conv1d_fn(x, weight, bias, activation=activation) dx, dw, db = torch.autograd.grad(out, (x, weight, bias), g) dw_equal = torch.allclose(dw, dw0, atol=dw_atol) # if not dw_equal: # breakpoint() if has_bias: db_equal = torch.allclose(db, db0, atol=db_atol) # if not db_equal: # breakpoint() assert torch.equal(out, out0) assert torch.equal(dx, dx0) assert dw_equal if has_bias: assert dw_equal