Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,787 Bytes
9d3cb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .utils.attention import Attention, JointAttention
from .utils.modules import unpatchify, FeedForward
from .utils.modules import film_modulate
class AdaLN(nn.Module):
def __init__(self, dim, ada_mode='ada', r=None, alpha=None):
super().__init__()
self.ada_mode = ada_mode
self.scale_shift_table = None
if ada_mode == 'ada':
# move nn.silu outside
self.time_ada = nn.Linear(dim, 6 * dim, bias=True)
elif ada_mode == 'ada_single':
# adaln used in pixel-art alpha
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
elif ada_mode in ['ada_lora', 'ada_lora_bias']:
self.lora_a = nn.Linear(dim, r * 6, bias=False)
self.lora_b = nn.Linear(r * 6, dim * 6, bias=False)
self.scaling = alpha / r
if ada_mode == 'ada_lora_bias':
# take bias out for consistency
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
else:
raise NotImplementedError
def forward(self, time_token=None, time_ada=None):
if self.ada_mode == 'ada':
assert time_ada is None
B = time_token.shape[0]
time_ada = self.time_ada(time_token).reshape(B, 6, -1)
elif self.ada_mode == 'ada_single':
B = time_ada.shape[0]
time_ada = time_ada.reshape(B, 6, -1)
time_ada = self.scale_shift_table[None] + time_ada
elif self.ada_mode in ['ada_lora', 'ada_lora_bias']:
B = time_ada.shape[0]
time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling
time_ada = time_ada + time_ada_lora
time_ada = time_ada.reshape(B, 6, -1)
if self.scale_shift_table is not None:
time_ada = self.scale_shift_table[None] + time_ada
else:
raise NotImplementedError
return time_ada
class DiTBlock(nn.Module):
"""
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(self, dim, context_dim=None,
num_heads=8, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, qk_norm=None,
act_layer='gelu', norm_layer=nn.LayerNorm,
time_fusion='none',
ada_lora_rank=None, ada_lora_alpha=None,
skip=False, skip_norm=False,
rope_mode='none',
context_norm=False,
use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode=rope_mode)
if context_dim is not None:
self.use_context = True
self.cross_attn = Attention(dim=dim,
num_heads=num_heads,
context_dim=context_dim,
qkv_bias=qkv_bias, qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode='none')
self.norm2 = norm_layer(dim)
if context_norm:
self.norm_context = norm_layer(context_dim)
else:
self.norm_context = nn.Identity()
else:
self.use_context = False
self.norm3 = norm_layer(dim)
self.mlp = FeedForward(dim=dim, mult=mlp_ratio,
activation_fn=act_layer, dropout=0)
self.use_adanorm = True if time_fusion != 'token' else False
if self.use_adanorm:
self.adaln = AdaLN(dim, ada_mode=time_fusion,
r=ada_lora_rank, alpha=ada_lora_alpha)
if skip:
self.skip_norm = norm_layer(2 * dim) if skip_norm else nn.Identity()
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
self.use_checkpoint = use_checkpoint
def forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
if self.use_checkpoint:
return checkpoint(self._forward, x,
time_token, time_ada, skip, context,
x_mask, context_mask, extras,
use_reentrant=False)
else:
return self._forward(x,
time_token, time_ada, skip, context,
x_mask, context_mask, extras)
def _forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
B, T, C = x.shape
if self.skip_linear is not None:
assert skip is not None
cat = torch.cat([x, skip], dim=-1)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
if self.use_adanorm:
time_ada = self.adaln(time_token, time_ada)
(shift_msa, scale_msa, gate_msa,
shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1)
# self attention
if self.use_adanorm:
x_norm = film_modulate(self.norm1(x), shift=shift_msa,
scale=scale_msa)
x = x + (1 - gate_msa) * self.attn(x_norm, context=None,
context_mask=x_mask,
extras=extras)
else:
x = x + self.attn(self.norm1(x), context=None, context_mask=x_mask,
extras=extras)
# cross attention
if self.use_context:
assert context is not None
x = x + self.cross_attn(x=self.norm2(x),
context=self.norm_context(context),
context_mask=context_mask, extras=extras)
# mlp
if self.use_adanorm:
x_norm = film_modulate(self.norm3(x), shift=shift_mlp, scale=scale_mlp)
x = x + (1 - gate_mlp) * self.mlp(x_norm)
else:
x = x + self.mlp(self.norm3(x))
return x
class JointDiTBlock(nn.Module):
"""
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(self, dim, context_dim=None,
num_heads=8, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, qk_norm=None,
act_layer='gelu', norm_layer=nn.LayerNorm,
time_fusion='none',
ada_lora_rank=None, ada_lora_alpha=None,
skip=(False, False),
rope_mode=False,
context_norm=False,
use_checkpoint=False,):
super().__init__()
# no cross attention
assert context_dim is None
self.attn_norm_x = norm_layer(dim)
self.attn_norm_c = norm_layer(dim)
self.attn = JointAttention(dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode=rope_mode)
self.ffn_norm_x = norm_layer(dim)
self.ffn_norm_c = norm_layer(dim)
self.mlp_x = FeedForward(dim=dim, mult=mlp_ratio,
activation_fn=act_layer, dropout=0)
self.mlp_c = FeedForward(dim=dim, mult=mlp_ratio,
activation_fn=act_layer, dropout=0)
# Zero-out the shift table
self.use_adanorm = True if time_fusion != 'token' else False
if self.use_adanorm:
self.adaln = AdaLN(dim, ada_mode=time_fusion,
r=ada_lora_rank, alpha=ada_lora_alpha)
if skip is False:
skip_x, skip_c = False, False
else:
skip_x, skip_c = skip
self.skip_linear_x = nn.Linear(2 * dim, dim) if skip_x else None
self.skip_linear_c = nn.Linear(2 * dim, dim) if skip_c else None
self.use_checkpoint = use_checkpoint
def forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
if self.use_checkpoint:
return checkpoint(self._forward, x,
time_token, time_ada, skip,
context, x_mask, context_mask, extras,
use_reentrant=False)
else:
return self._forward(x,
time_token, time_ada, skip,
context, x_mask, context_mask, extras)
def _forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
assert context is None and context_mask is None
context, x = x[:, :extras, :], x[:, extras:, :]
context_mask, x_mask = x_mask[:, :extras], x_mask[:, extras:]
if skip is not None:
skip_c, skip_x = skip[:, :extras, :], skip[:, extras:, :]
B, T, C = x.shape
if self.skip_linear_x is not None:
x = self.skip_linear_x(torch.cat([x, skip_x], dim=-1))
if self.skip_linear_c is not None:
context = self.skip_linear_c(torch.cat([context, skip_c], dim=-1))
if self.use_adanorm:
time_ada = self.adaln(time_token, time_ada)
(shift_msa, scale_msa, gate_msa,
shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1)
# self attention
x_norm = self.attn_norm_x(x)
c_norm = self.attn_norm_c(context)
if self.use_adanorm:
x_norm = film_modulate(x_norm, shift=shift_msa, scale=scale_msa)
x_out, c_out = self.attn(x_norm, context=c_norm,
x_mask=x_mask, context_mask=context_mask,
extras=extras)
if self.use_adanorm:
x = x + (1 - gate_msa) * x_out
else:
x = x + x_out
context = context + c_out
# mlp
if self.use_adanorm:
x_norm = film_modulate(self.ffn_norm_x(x),
shift=shift_mlp, scale=scale_mlp)
x = x + (1 - gate_mlp) * self.mlp_x(x_norm)
else:
x = x + self.mlp_x(self.ffn_norm_x(x))
c_norm = self.ffn_norm_c(context)
context = context + self.mlp_c(c_norm)
return torch.cat((context, x), dim=1)
class FinalBlock(nn.Module):
def __init__(self, embed_dim, patch_size, in_chans,
img_size,
input_type='2d',
norm_layer=nn.LayerNorm,
use_conv=True,
use_adanorm=True):
super().__init__()
self.in_chans = in_chans
self.img_size = img_size
self.input_type = input_type
self.norm = norm_layer(embed_dim)
if use_adanorm:
self.use_adanorm = True
else:
self.use_adanorm = False
if input_type == '2d':
self.patch_dim = patch_size ** 2 * in_chans
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
if use_conv:
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans,
3, padding=1)
else:
self.final_layer = nn.Identity()
elif input_type == '1d':
self.patch_dim = patch_size * in_chans
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
if use_conv:
self.final_layer = nn.Conv1d(self.in_chans, self.in_chans,
3, padding=1)
else:
self.final_layer = nn.Identity()
def forward(self, x, time_ada=None, extras=0):
B, T, C = x.shape
x = x[:, extras:, :]
# only handle generation target
if self.use_adanorm:
shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1)
x = film_modulate(self.norm(x), shift, scale)
else:
x = self.norm(x)
x = self.linear(x)
x = unpatchify(x, self.in_chans, self.input_type, self.img_size)
x = self.final_layer(x)
return x |