Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,916 Bytes
9d3cb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
from pathlib import Path
from typing import Callable
from typing import Dict
from typing import List
from typing import Union
import numpy as np
from torch.utils.data import SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from ..core import AudioSignal
from ..core import util
class AudioLoader:
"""Loads audio endlessly from a list of audio sources
containing paths to audio files. Audio sources can be
folders full of audio files (which are found via file
extension) or by providing a CSV file which contains paths
to audio files.
Parameters
----------
sources : List[str], optional
Sources containing folders, or CSVs with
paths to audio files, by default None
weights : List[float], optional
Weights to sample audio files from each source, by default None
relative_path : str, optional
Path audio should be loaded relative to, by default ""
transform : Callable, optional
Transform to instantiate alongside audio sample,
by default None
ext : List[str]
List of extensions to find audio within each source by. Can
also be a file name (e.g. "vocals.wav"). by default
``['.wav', '.flac', '.mp3', '.mp4']``.
shuffle: bool
Whether to shuffle the files within the dataloader. Defaults to True.
shuffle_state: int
State to use to seed the shuffle of the files.
"""
def __init__(
self,
sources: List[str] = None,
weights: List[float] = None,
transform: Callable = None,
relative_path: str = "",
ext: List[str] = util.AUDIO_EXTENSIONS,
shuffle: bool = True,
shuffle_state: int = 0,
):
self.audio_lists = util.read_sources(
sources, relative_path=relative_path, ext=ext
)
self.audio_indices = [
(src_idx, item_idx)
for src_idx, src in enumerate(self.audio_lists)
for item_idx in range(len(src))
]
if shuffle:
state = util.random_state(shuffle_state)
state.shuffle(self.audio_indices)
self.sources = sources
self.weights = weights
self.transform = transform
def __call__(
self,
state,
sample_rate: int,
duration: float,
loudness_cutoff: float = -40,
num_channels: int = 1,
offset: float = None,
source_idx: int = None,
item_idx: int = None,
global_idx: int = None,
):
if source_idx is not None and item_idx is not None:
try:
audio_info = self.audio_lists[source_idx][item_idx]
except:
audio_info = {"path": "none"}
elif global_idx is not None:
source_idx, item_idx = self.audio_indices[
global_idx % len(self.audio_indices)
]
audio_info = self.audio_lists[source_idx][item_idx]
else:
audio_info, source_idx, item_idx = util.choose_from_list_of_lists(
state, self.audio_lists, p=self.weights
)
path = audio_info["path"]
signal = AudioSignal.zeros(duration, sample_rate, num_channels)
if path != "none":
if offset is None:
signal = AudioSignal.salient_excerpt(
path,
duration=duration,
state=state,
loudness_cutoff=loudness_cutoff,
)
else:
signal = AudioSignal(
path,
offset=offset,
duration=duration,
)
if num_channels == 1:
signal = signal.to_mono()
signal = signal.resample(sample_rate)
if signal.duration < duration:
signal = signal.zero_pad_to(int(duration * sample_rate))
for k, v in audio_info.items():
signal.metadata[k] = v
item = {
"signal": signal,
"source_idx": source_idx,
"item_idx": item_idx,
"source": str(self.sources[source_idx]),
"path": str(path),
}
if self.transform is not None:
item["transform_args"] = self.transform.instantiate(state, signal=signal)
return item
def default_matcher(x, y):
return Path(x).parent == Path(y).parent
def align_lists(lists, matcher: Callable = default_matcher):
longest_list = lists[np.argmax([len(l) for l in lists])]
for i, x in enumerate(longest_list):
for l in lists:
if i >= len(l):
l.append({"path": "none"})
elif not matcher(l[i]["path"], x["path"]):
l.insert(i, {"path": "none"})
return lists
class AudioDataset:
"""Loads audio from multiple loaders (with associated transforms)
for a specified number of samples. Excerpts are drawn randomly
of the specified duration, above a specified loudness threshold
and are resampled on the fly to the desired sample rate
(if it is different from the audio source sample rate).
This takes either a single AudioLoader object,
a dictionary of AudioLoader objects, or a dictionary of AudioLoader
objects. Each AudioLoader is called by the dataset, and the
result is placed in the output dictionary. A transform can also be
specified for the entire dataset, rather than for each specific
loader. This transform can be applied to the output of all the
loaders if desired.
AudioLoader objects can be specified as aligned, which means the
loaders correspond to multitrack audio (e.g. a vocals, bass,
drums, and other loader for multitrack music mixtures).
Parameters
----------
loaders : Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]]
AudioLoaders to sample audio from.
sample_rate : int
Desired sample rate.
n_examples : int, optional
Number of examples (length of dataset), by default 1000
duration : float, optional
Duration of audio samples, by default 0.5
loudness_cutoff : float, optional
Loudness cutoff threshold for audio samples, by default -40
num_channels : int, optional
Number of channels in output audio, by default 1
transform : Callable, optional
Transform to instantiate alongside each dataset item, by default None
aligned : bool, optional
Whether the loaders should be sampled in an aligned manner (e.g. same
offset, duration, and matched file name), by default False
shuffle_loaders : bool, optional
Whether to shuffle the loaders before sampling from them, by default False
matcher : Callable
How to match files from adjacent audio lists (e.g. for a multitrack audio loader),
by default uses the parent directory of each file.
without_replacement : bool
Whether to choose files with or without replacement, by default True.
Examples
--------
>>> from audiotools.data.datasets import AudioLoader
>>> from audiotools.data.datasets import AudioDataset
>>> from audiotools import transforms as tfm
>>> import numpy as np
>>>
>>> loaders = [
>>> AudioLoader(
>>> sources=[f"tests/audio/spk"],
>>> transform=tfm.Equalizer(),
>>> ext=["wav"],
>>> )
>>> for i in range(5)
>>> ]
>>>
>>> dataset = AudioDataset(
>>> loaders = loaders,
>>> sample_rate = 44100,
>>> duration = 1.0,
>>> transform = tfm.RescaleAudio(),
>>> )
>>>
>>> item = dataset[np.random.randint(len(dataset))]
>>>
>>> for i in range(len(loaders)):
>>> item[i]["signal"] = loaders[i].transform(
>>> item[i]["signal"], **item[i]["transform_args"]
>>> )
>>> item[i]["signal"].widget(i)
>>>
>>> mix = sum([item[i]["signal"] for i in range(len(loaders))])
>>> mix = dataset.transform(mix, **item["transform_args"])
>>> mix.widget("mix")
Below is an example of how one could load MUSDB multitrack data:
>>> import audiotools as at
>>> from pathlib import Path
>>> from audiotools import transforms as tfm
>>> import numpy as np
>>> import torch
>>>
>>> def build_dataset(
>>> sample_rate: int = 44100,
>>> duration: float = 5.0,
>>> musdb_path: str = "~/.data/musdb/",
>>> ):
>>> musdb_path = Path(musdb_path).expanduser()
>>> loaders = {
>>> src: at.datasets.AudioLoader(
>>> sources=[musdb_path],
>>> transform=tfm.Compose(
>>> tfm.VolumeNorm(("uniform", -20, -10)),
>>> tfm.Silence(prob=0.1),
>>> ),
>>> ext=[f"{src}.wav"],
>>> )
>>> for src in ["vocals", "bass", "drums", "other"]
>>> }
>>>
>>> dataset = at.datasets.AudioDataset(
>>> loaders=loaders,
>>> sample_rate=sample_rate,
>>> duration=duration,
>>> num_channels=1,
>>> aligned=True,
>>> transform=tfm.RescaleAudio(),
>>> shuffle_loaders=True,
>>> )
>>> return dataset, list(loaders.keys())
>>>
>>> train_data, sources = build_dataset()
>>> dataloader = torch.utils.data.DataLoader(
>>> train_data,
>>> batch_size=16,
>>> num_workers=0,
>>> collate_fn=train_data.collate,
>>> )
>>> batch = next(iter(dataloader))
>>>
>>> for k in sources:
>>> src = batch[k]
>>> src["transformed"] = train_data.loaders[k].transform(
>>> src["signal"].clone(), **src["transform_args"]
>>> )
>>>
>>> mixture = sum(batch[k]["transformed"] for k in sources)
>>> mixture = train_data.transform(mixture, **batch["transform_args"])
>>>
>>> # Say a model takes the mix and gives back (n_batch, n_src, n_time).
>>> # Construct the targets:
>>> targets = at.AudioSignal.batch([batch[k]["transformed"] for k in sources], dim=1)
Similarly, here's example code for loading Slakh data:
>>> import audiotools as at
>>> from pathlib import Path
>>> from audiotools import transforms as tfm
>>> import numpy as np
>>> import torch
>>> import glob
>>>
>>> def build_dataset(
>>> sample_rate: int = 16000,
>>> duration: float = 10.0,
>>> slakh_path: str = "~/.data/slakh/",
>>> ):
>>> slakh_path = Path(slakh_path).expanduser()
>>>
>>> # Find the max number of sources in Slakh
>>> src_names = [x.name for x in list(slakh_path.glob("**/*.wav")) if "S" in str(x.name)]
>>> n_sources = len(list(set(src_names)))
>>>
>>> loaders = {
>>> f"S{i:02d}": at.datasets.AudioLoader(
>>> sources=[slakh_path],
>>> transform=tfm.Compose(
>>> tfm.VolumeNorm(("uniform", -20, -10)),
>>> tfm.Silence(prob=0.1),
>>> ),
>>> ext=[f"S{i:02d}.wav"],
>>> )
>>> for i in range(n_sources)
>>> }
>>> dataset = at.datasets.AudioDataset(
>>> loaders=loaders,
>>> sample_rate=sample_rate,
>>> duration=duration,
>>> num_channels=1,
>>> aligned=True,
>>> transform=tfm.RescaleAudio(),
>>> shuffle_loaders=False,
>>> )
>>>
>>> return dataset, list(loaders.keys())
>>>
>>> train_data, sources = build_dataset()
>>> dataloader = torch.utils.data.DataLoader(
>>> train_data,
>>> batch_size=16,
>>> num_workers=0,
>>> collate_fn=train_data.collate,
>>> )
>>> batch = next(iter(dataloader))
>>>
>>> for k in sources:
>>> src = batch[k]
>>> src["transformed"] = train_data.loaders[k].transform(
>>> src["signal"].clone(), **src["transform_args"]
>>> )
>>>
>>> mixture = sum(batch[k]["transformed"] for k in sources)
>>> mixture = train_data.transform(mixture, **batch["transform_args"])
"""
def __init__(
self,
loaders: Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]],
sample_rate: int,
n_examples: int = 1000,
duration: float = 0.5,
offset: float = None,
loudness_cutoff: float = -40,
num_channels: int = 1,
transform: Callable = None,
aligned: bool = False,
shuffle_loaders: bool = False,
matcher: Callable = default_matcher,
without_replacement: bool = True,
):
# Internally we convert loaders to a dictionary
if isinstance(loaders, list):
loaders = {i: l for i, l in enumerate(loaders)}
elif isinstance(loaders, AudioLoader):
loaders = {0: loaders}
self.loaders = loaders
self.loudness_cutoff = loudness_cutoff
self.num_channels = num_channels
self.length = n_examples
self.transform = transform
self.sample_rate = sample_rate
self.duration = duration
self.offset = offset
self.aligned = aligned
self.shuffle_loaders = shuffle_loaders
self.without_replacement = without_replacement
if aligned:
loaders_list = list(loaders.values())
for i in range(len(loaders_list[0].audio_lists)):
input_lists = [l.audio_lists[i] for l in loaders_list]
# Alignment happens in-place
align_lists(input_lists, matcher)
def __getitem__(self, idx):
state = util.random_state(idx)
offset = None if self.offset is None else self.offset
item = {}
keys = list(self.loaders.keys())
if self.shuffle_loaders:
state.shuffle(keys)
loader_kwargs = {
"state": state,
"sample_rate": self.sample_rate,
"duration": self.duration,
"loudness_cutoff": self.loudness_cutoff,
"num_channels": self.num_channels,
"global_idx": idx if self.without_replacement else None,
}
# Draw item from first loader
loader = self.loaders[keys[0]]
item[keys[0]] = loader(**loader_kwargs)
for key in keys[1:]:
loader = self.loaders[key]
if self.aligned:
# Path mapper takes the current loader + everything
# returned by the first loader.
offset = item[keys[0]]["signal"].metadata["offset"]
loader_kwargs.update(
{
"offset": offset,
"source_idx": item[keys[0]]["source_idx"],
"item_idx": item[keys[0]]["item_idx"],
}
)
item[key] = loader(**loader_kwargs)
# Sort dictionary back into original order
keys = list(self.loaders.keys())
item = {k: item[k] for k in keys}
item["idx"] = idx
if self.transform is not None:
item["transform_args"] = self.transform.instantiate(
state=state, signal=item[keys[0]]["signal"]
)
# If there's only one loader, pop it up
# to the main dictionary, instead of keeping it
# nested.
if len(keys) == 1:
item.update(item.pop(keys[0]))
return item
def __len__(self):
return self.length
@staticmethod
def collate(list_of_dicts: Union[list, dict], n_splits: int = None):
"""Collates items drawn from this dataset. Uses
:py:func:`audiotools.core.util.collate`.
Parameters
----------
list_of_dicts : typing.Union[list, dict]
Data drawn from each item.
n_splits : int
Number of splits to make when creating the batches (split into
sub-batches). Useful for things like gradient accumulation.
Returns
-------
dict
Dictionary of batched data.
"""
return util.collate(list_of_dicts, n_splits=n_splits)
class ConcatDataset(AudioDataset):
def __init__(self, datasets: list):
self.datasets = datasets
def __len__(self):
return sum([len(d) for d in self.datasets])
def __getitem__(self, idx):
dataset = self.datasets[idx % len(self.datasets)]
return dataset[idx // len(self.datasets)]
class ResumableDistributedSampler(DistributedSampler): # pragma: no cover
"""Distributed sampler that can be resumed from a given start index."""
def __init__(self, dataset, start_idx: int = None, **kwargs):
super().__init__(dataset, **kwargs)
# Start index, allows to resume an experiment at the index it was
self.start_idx = start_idx // self.num_replicas if start_idx is not None else 0
def __iter__(self):
for i, idx in enumerate(super().__iter__()):
if i >= self.start_idx:
yield idx
self.start_idx = 0 # set the index back to 0 so for the next epoch
class ResumableSequentialSampler(SequentialSampler): # pragma: no cover
"""Sequential sampler that can be resumed from a given start index."""
def __init__(self, dataset, start_idx: int = None, **kwargs):
super().__init__(dataset, **kwargs)
# Start index, allows to resume an experiment at the index it was
self.start_idx = start_idx if start_idx is not None else 0
def __iter__(self):
for i, idx in enumerate(super().__iter__()):
if i >= self.start_idx:
yield idx
self.start_idx = 0 # set the index back to 0 so for the next epoch
|