OpenSound's picture
Upload 211 files
9d3cb0a verified
raw
history blame
52.6 kB
import copy
from contextlib import contextmanager
from inspect import signature
from typing import List
import numpy as np
import torch
from flatten_dict import flatten
from flatten_dict import unflatten
from numpy.random import RandomState
from .. import ml
from ..core import AudioSignal
from ..core import util
from .datasets import AudioLoader
tt = torch.tensor
"""Shorthand for converting things to torch.tensor."""
class BaseTransform:
"""This is the base class for all transforms that are implemented
in this library. Transforms have two main operations: ``transform``
and ``instantiate``.
``instantiate`` sets the parameters randomly
from distribution tuples for each parameter. For example, for the
``BackgroundNoise`` transform, the signal-to-noise ratio (``snr``)
is chosen randomly by instantiate. By default, it chosen uniformly
between 10.0 and 30.0 (the tuple is set to ``("uniform", 10.0, 30.0)``).
``transform`` applies the transform using the instantiated parameters.
A simple example is as follows:
>>> seed = 0
>>> signal = ...
>>> transform = transforms.NoiseFloor(db = ("uniform", -50.0, -30.0))
>>> kwargs = transform.instantiate()
>>> output = transform(signal.clone(), **kwargs)
By breaking apart the instantiation of parameters from the actual audio
processing of the transform, we can make things more reproducible, while
also applying the transform on batches of data efficiently on GPU,
rather than on individual audio samples.
.. note::
We call ``signal.clone()`` for the input to the ``transform`` function
because signals are modified in-place! If you don't clone the signal,
you will lose the original data.
Parameters
----------
keys : list, optional
Keys that the transform looks for when
calling ``self.transform``, by default []. In general this is
set automatically, and you won't need to manipulate this argument.
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
Examples
--------
>>> seed = 0
>>>
>>> audio_path = "tests/audio/spk/f10_script4_produced.wav"
>>> signal = AudioSignal(audio_path, offset=10, duration=2)
>>> transform = tfm.Compose(
>>> [
>>> tfm.RoomImpulseResponse(sources=["tests/audio/irs.csv"]),
>>> tfm.BackgroundNoise(sources=["tests/audio/noises.csv"]),
>>> ],
>>> )
>>>
>>> kwargs = transform.instantiate(seed, signal)
>>> output = transform(signal, **kwargs)
"""
def __init__(self, keys: list = [], name: str = None, prob: float = 1.0):
# Get keys from the _transform signature.
tfm_keys = list(signature(self._transform).parameters.keys())
# Filter out signal and kwargs keys.
ignore_keys = ["signal", "kwargs"]
tfm_keys = [k for k in tfm_keys if k not in ignore_keys]
# Combine keys specified by the child class, the keys found in
# _transform signature, and the mask key.
self.keys = keys + tfm_keys + ["mask"]
self.prob = prob
if name is None:
name = self.__class__.__name__
self.name = name
def _prepare(self, batch: dict):
sub_batch = batch[self.name]
for k in self.keys:
assert k in sub_batch.keys(), f"{k} not in batch"
return sub_batch
def _transform(self, signal):
return signal
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
return {}
@staticmethod
def apply_mask(batch: dict, mask: torch.Tensor):
"""Applies a mask to the batch.
Parameters
----------
batch : dict
Batch whose values will be masked in the ``transform`` pass.
mask : torch.Tensor
Mask to apply to batch.
Returns
-------
dict
A dictionary that contains values only where ``mask = True``.
"""
masked_batch = {k: v[mask] for k, v in flatten(batch).items()}
return unflatten(masked_batch)
def transform(self, signal: AudioSignal, **kwargs):
"""Apply the transform to the audio signal,
with given keyword arguments.
Parameters
----------
signal : AudioSignal
Signal that will be modified by the transforms in-place.
kwargs: dict
Keyword arguments to the specific transforms ``self._transform``
function.
Returns
-------
AudioSignal
Transformed AudioSignal.
Examples
--------
>>> for seed in range(10):
>>> kwargs = transform.instantiate(seed, signal)
>>> output = transform(signal.clone(), **kwargs)
"""
tfm_kwargs = self._prepare(kwargs)
mask = tfm_kwargs["mask"]
if torch.any(mask):
tfm_kwargs = self.apply_mask(tfm_kwargs, mask)
tfm_kwargs = {k: v for k, v in tfm_kwargs.items() if k != "mask"}
signal[mask] = self._transform(signal[mask], **tfm_kwargs)
return signal
def __call__(self, *args, **kwargs):
return self.transform(*args, **kwargs)
def instantiate(
self,
state: RandomState = None,
signal: AudioSignal = None,
):
"""Instantiates parameters for the transform.
Parameters
----------
state : RandomState, optional
_description_, by default None
signal : AudioSignal, optional
_description_, by default None
Returns
-------
dict
Dictionary containing instantiated arguments for every keyword
argument to ``self._transform``.
Examples
--------
>>> for seed in range(10):
>>> kwargs = transform.instantiate(seed, signal)
>>> output = transform(signal.clone(), **kwargs)
"""
state = util.random_state(state)
# Not all instantiates need the signal. Check if signal
# is needed before passing it in, so that the end-user
# doesn't need to have variables they're not using flowing
# into their function.
needs_signal = "signal" in set(signature(self._instantiate).parameters.keys())
kwargs = {}
if needs_signal:
kwargs = {"signal": signal}
# Instantiate the parameters for the transform.
params = self._instantiate(state, **kwargs)
for k in list(params.keys()):
v = params[k]
if isinstance(v, (AudioSignal, torch.Tensor, dict)):
params[k] = v
else:
params[k] = tt(v)
mask = state.rand() <= self.prob
params[f"mask"] = tt(mask)
# Put the params into a nested dictionary that will be
# used later when calling the transform. This is to avoid
# collisions in the dictionary.
params = {self.name: params}
return params
def batch_instantiate(
self,
states: list = None,
signal: AudioSignal = None,
):
"""Instantiates arguments for every item in a batch,
given a list of states. Each state in the list
corresponds to one item in the batch.
Parameters
----------
states : list, optional
List of states, by default None
signal : AudioSignal, optional
AudioSignal to pass to the ``self.instantiate`` section
if it is needed for this transform, by default None
Returns
-------
dict
Collated dictionary of arguments.
Examples
--------
>>> batch_size = 4
>>> signal = AudioSignal(audio_path, offset=10, duration=2)
>>> signal_batch = AudioSignal.batch([signal.clone() for _ in range(batch_size)])
>>>
>>> states = [seed + idx for idx in list(range(batch_size))]
>>> kwargs = transform.batch_instantiate(states, signal_batch)
>>> batch_output = transform(signal_batch, **kwargs)
"""
kwargs = []
for state in states:
kwargs.append(self.instantiate(state, signal))
kwargs = util.collate(kwargs)
return kwargs
class Identity(BaseTransform):
"""This transform just returns the original signal."""
pass
class SpectralTransform(BaseTransform):
"""Spectral transforms require STFT data to exist, since manipulations
of the STFT require the spectrogram. This just calls ``stft`` before
the transform is called, and calls ``istft`` after the transform is
called so that the audio data is written to after the spectral
manipulation.
"""
def transform(self, signal, **kwargs):
signal.stft()
super().transform(signal, **kwargs)
signal.istft()
return signal
class Compose(BaseTransform):
"""Compose applies transforms in sequence, one after the other. The
transforms are passed in as positional arguments or as a list like so:
>>> transform = tfm.Compose(
>>> [
>>> tfm.RoomImpulseResponse(sources=["tests/audio/irs.csv"]),
>>> tfm.BackgroundNoise(sources=["tests/audio/noises.csv"]),
>>> ],
>>> )
This will convolve the signal with a room impulse response, and then
add background noise to the signal. Instantiate instantiates
all the parameters for every transform in the transform list so the
interface for using the Compose transform is the same as everything
else:
>>> kwargs = transform.instantiate()
>>> output = transform(signal.clone(), **kwargs)
Under the hood, the transform maps each transform to a unique name
under the hood of the form ``{position}.{name}``, where ``position``
is the index of the transform in the list. ``Compose`` can nest
within other ``Compose`` transforms, like so:
>>> preprocess = transforms.Compose(
>>> tfm.GlobalVolumeNorm(),
>>> tfm.CrossTalk(),
>>> name="preprocess",
>>> )
>>> augment = transforms.Compose(
>>> tfm.RoomImpulseResponse(),
>>> tfm.BackgroundNoise(),
>>> name="augment",
>>> )
>>> postprocess = transforms.Compose(
>>> tfm.VolumeChange(),
>>> tfm.RescaleAudio(),
>>> tfm.ShiftPhase(),
>>> name="postprocess",
>>> )
>>> transform = transforms.Compose(preprocess, augment, postprocess),
This defines 3 composed transforms, and then composes them in sequence
with one another.
Parameters
----------
*transforms : list
List of transforms to apply
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(self, *transforms: list, name: str = None, prob: float = 1.0):
if isinstance(transforms[0], list):
transforms = transforms[0]
for i, tfm in enumerate(transforms):
tfm.name = f"{i}.{tfm.name}"
keys = [tfm.name for tfm in transforms]
super().__init__(keys=keys, name=name, prob=prob)
self.transforms = transforms
self.transforms_to_apply = keys
@contextmanager
def filter(self, *names: list):
"""This can be used to skip transforms entirely when applying
the sequence of transforms to a signal. For example, take
the following transforms with the names ``preprocess, augment, postprocess``.
>>> preprocess = transforms.Compose(
>>> tfm.GlobalVolumeNorm(),
>>> tfm.CrossTalk(),
>>> name="preprocess",
>>> )
>>> augment = transforms.Compose(
>>> tfm.RoomImpulseResponse(),
>>> tfm.BackgroundNoise(),
>>> name="augment",
>>> )
>>> postprocess = transforms.Compose(
>>> tfm.VolumeChange(),
>>> tfm.RescaleAudio(),
>>> tfm.ShiftPhase(),
>>> name="postprocess",
>>> )
>>> transform = transforms.Compose(preprocess, augment, postprocess)
If we wanted to apply all 3 to a signal, we do:
>>> kwargs = transform.instantiate()
>>> output = transform(signal.clone(), **kwargs)
But if we only wanted to apply the ``preprocess`` and ``postprocess``
transforms to the signal, we do:
>>> with transform_fn.filter("preprocess", "postprocess"):
>>> output = transform(signal.clone(), **kwargs)
Parameters
----------
*names : list
List of transforms, identified by name, to apply to signal.
"""
old_transforms = self.transforms_to_apply
self.transforms_to_apply = names
yield
self.transforms_to_apply = old_transforms
def _transform(self, signal, **kwargs):
for transform in self.transforms:
if any([x in transform.name for x in self.transforms_to_apply]):
signal = transform(signal, **kwargs)
return signal
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
parameters = {}
for transform in self.transforms:
parameters.update(transform.instantiate(state, signal=signal))
return parameters
def __getitem__(self, idx):
return self.transforms[idx]
def __len__(self):
return len(self.transforms)
def __iter__(self):
for transform in self.transforms:
yield transform
class Choose(Compose):
"""Choose logic is the same as :py:func:`audiotools.data.transforms.Compose`,
but instead of applying all the transforms in sequence, it applies just a single transform,
which is chosen for each item in the batch.
Parameters
----------
*transforms : list
List of transforms to apply
weights : list
Probability of choosing any specific transform.
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
Examples
--------
>>> transforms.Choose(tfm.LowPass(), tfm.HighPass())
"""
def __init__(
self,
*transforms: list,
weights: list = None,
name: str = None,
prob: float = 1.0,
):
super().__init__(*transforms, name=name, prob=prob)
if weights is None:
_len = len(self.transforms)
weights = [1 / _len for _ in range(_len)]
self.weights = np.array(weights)
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
kwargs = super()._instantiate(state, signal)
tfm_idx = list(range(len(self.transforms)))
tfm_idx = state.choice(tfm_idx, p=self.weights)
one_hot = []
for i, t in enumerate(self.transforms):
mask = kwargs[t.name]["mask"]
if mask.item():
kwargs[t.name]["mask"] = tt(i == tfm_idx)
one_hot.append(kwargs[t.name]["mask"])
kwargs["one_hot"] = one_hot
return kwargs
class Repeat(Compose):
"""Repeatedly applies a given transform ``n_repeat`` times."
Parameters
----------
transform : BaseTransform
Transform to repeat.
n_repeat : int, optional
Number of times to repeat transform, by default 1
"""
def __init__(
self,
transform,
n_repeat: int = 1,
name: str = None,
prob: float = 1.0,
):
transforms = [copy.copy(transform) for _ in range(n_repeat)]
super().__init__(transforms, name=name, prob=prob)
self.n_repeat = n_repeat
class RepeatUpTo(Choose):
"""Repeatedly applies a given transform up to ``max_repeat`` times."
Parameters
----------
transform : BaseTransform
Transform to repeat.
max_repeat : int, optional
Max number of times to repeat transform, by default 1
weights : list
Probability of choosing any specific number up to ``max_repeat``.
"""
def __init__(
self,
transform,
max_repeat: int = 5,
weights: list = None,
name: str = None,
prob: float = 1.0,
):
transforms = []
for n in range(1, max_repeat):
transforms.append(Repeat(transform, n_repeat=n))
super().__init__(transforms, name=name, prob=prob, weights=weights)
self.max_repeat = max_repeat
class ClippingDistortion(BaseTransform):
"""Adds clipping distortion to signal. Corresponds
to :py:func:`audiotools.core.effects.EffectMixin.clip_distortion`.
Parameters
----------
perc : tuple, optional
Clipping percentile. Values are between 0.0 to 1.0.
Typical values are 0.1 or below, by default ("uniform", 0.0, 0.1)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
perc: tuple = ("uniform", 0.0, 0.1),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.perc = perc
def _instantiate(self, state: RandomState):
return {"perc": util.sample_from_dist(self.perc, state)}
def _transform(self, signal, perc):
return signal.clip_distortion(perc)
class Equalizer(BaseTransform):
"""Applies an equalization curve to the audio signal. Corresponds
to :py:func:`audiotools.core.effects.EffectMixin.equalizer`.
Parameters
----------
eq_amount : tuple, optional
The maximum dB cut to apply to the audio in any band,
by default ("const", 1.0 dB)
n_bands : int, optional
Number of bands in EQ, by default 6
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
eq_amount: tuple = ("const", 1.0),
n_bands: int = 6,
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.eq_amount = eq_amount
self.n_bands = n_bands
def _instantiate(self, state: RandomState):
eq_amount = util.sample_from_dist(self.eq_amount, state)
eq = -eq_amount * state.rand(self.n_bands)
return {"eq": eq}
def _transform(self, signal, eq):
return signal.equalizer(eq)
class Quantization(BaseTransform):
"""Applies quantization to the input waveform. Corresponds
to :py:func:`audiotools.core.effects.EffectMixin.quantization`.
Parameters
----------
channels : tuple, optional
Number of evenly spaced quantization channels to quantize
to, by default ("choice", [8, 32, 128, 256, 1024])
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
channels: tuple = ("choice", [8, 32, 128, 256, 1024]),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.channels = channels
def _instantiate(self, state: RandomState):
return {"channels": util.sample_from_dist(self.channels, state)}
def _transform(self, signal, channels):
return signal.quantization(channels)
class MuLawQuantization(BaseTransform):
"""Applies mu-law quantization to the input waveform. Corresponds
to :py:func:`audiotools.core.effects.EffectMixin.mulaw_quantization`.
Parameters
----------
channels : tuple, optional
Number of mu-law spaced quantization channels to quantize
to, by default ("choice", [8, 32, 128, 256, 1024])
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
channels: tuple = ("choice", [8, 32, 128, 256, 1024]),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.channels = channels
def _instantiate(self, state: RandomState):
return {"channels": util.sample_from_dist(self.channels, state)}
def _transform(self, signal, channels):
return signal.mulaw_quantization(channels)
class NoiseFloor(BaseTransform):
"""Adds a noise floor of Gaussian noise to the signal at a specified
dB.
Parameters
----------
db : tuple, optional
Level of noise to add to signal, by default ("const", -50.0)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
db: tuple = ("const", -50.0),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.db = db
def _instantiate(self, state: RandomState, signal: AudioSignal):
db = util.sample_from_dist(self.db, state)
audio_data = state.randn(signal.num_channels, signal.signal_length)
nz_signal = AudioSignal(audio_data, signal.sample_rate)
nz_signal.normalize(db)
return {"nz_signal": nz_signal}
def _transform(self, signal, nz_signal):
# Clone bg_signal so that transform can be repeatedly applied
# to different signals with the same effect.
return signal + nz_signal
class BackgroundNoise(BaseTransform):
"""Adds background noise from audio specified by a set of CSV files.
A valid CSV file looks like, and is typically generated by
:py:func:`audiotools.data.preprocess.create_csv`:
.. csv-table::
:header: path
room_tone/m6_script2_clean.wav
room_tone/m6_script2_cleanraw.wav
room_tone/m6_script2_ipad_balcony1.wav
room_tone/m6_script2_ipad_bedroom1.wav
room_tone/m6_script2_ipad_confroom1.wav
room_tone/m6_script2_ipad_confroom2.wav
room_tone/m6_script2_ipad_livingroom1.wav
room_tone/m6_script2_ipad_office1.wav
.. note::
All paths are relative to an environment variable called ``PATH_TO_DATA``,
so that CSV files are portable across machines where data may be
located in different places.
This transform calls :py:func:`audiotools.core.effects.EffectMixin.mix`
and :py:func:`audiotools.core.effects.EffectMixin.equalizer` under the
hood.
Parameters
----------
snr : tuple, optional
Signal-to-noise ratio, by default ("uniform", 10.0, 30.0)
sources : List[str], optional
Sources containing folders, or CSVs with paths to audio files,
by default None
weights : List[float], optional
Weights to sample audio files from each source, by default None
eq_amount : tuple, optional
Amount of equalization to apply, by default ("const", 1.0)
n_bands : int, optional
Number of bands in equalizer, by default 3
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
loudness_cutoff : float, optional
Loudness cutoff when loading from audio files, by default None
"""
def __init__(
self,
snr: tuple = ("uniform", 10.0, 30.0),
sources: List[str] = None,
weights: List[float] = None,
eq_amount: tuple = ("const", 1.0),
n_bands: int = 3,
name: str = None,
prob: float = 1.0,
loudness_cutoff: float = None,
):
super().__init__(name=name, prob=prob)
self.snr = snr
self.eq_amount = eq_amount
self.n_bands = n_bands
self.loader = AudioLoader(sources, weights)
self.loudness_cutoff = loudness_cutoff
def _instantiate(self, state: RandomState, signal: AudioSignal):
eq_amount = util.sample_from_dist(self.eq_amount, state)
eq = -eq_amount * state.rand(self.n_bands)
snr = util.sample_from_dist(self.snr, state)
bg_signal = self.loader(
state,
signal.sample_rate,
duration=signal.signal_duration,
loudness_cutoff=self.loudness_cutoff,
num_channels=signal.num_channels,
)["signal"]
return {"eq": eq, "bg_signal": bg_signal, "snr": snr}
def _transform(self, signal, bg_signal, snr, eq):
# Clone bg_signal so that transform can be repeatedly applied
# to different signals with the same effect.
return signal.mix(bg_signal.clone(), snr, eq)
class CrossTalk(BaseTransform):
"""Adds crosstalk between speakers, whose audio is drawn from a CSV file
that was produced via :py:func:`audiotools.data.preprocess.create_csv`.
This transform calls :py:func:`audiotools.core.effects.EffectMixin.mix`
under the hood.
Parameters
----------
snr : tuple, optional
How loud cross-talk speaker is relative to original signal in dB,
by default ("uniform", 0.0, 10.0)
sources : List[str], optional
Sources containing folders, or CSVs with paths to audio files,
by default None
weights : List[float], optional
Weights to sample audio files from each source, by default None
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
loudness_cutoff : float, optional
Loudness cutoff when loading from audio files, by default -40
"""
def __init__(
self,
snr: tuple = ("uniform", 0.0, 10.0),
sources: List[str] = None,
weights: List[float] = None,
name: str = None,
prob: float = 1.0,
loudness_cutoff: float = -40,
):
super().__init__(name=name, prob=prob)
self.snr = snr
self.loader = AudioLoader(sources, weights)
self.loudness_cutoff = loudness_cutoff
def _instantiate(self, state: RandomState, signal: AudioSignal):
snr = util.sample_from_dist(self.snr, state)
crosstalk_signal = self.loader(
state,
signal.sample_rate,
duration=signal.signal_duration,
loudness_cutoff=self.loudness_cutoff,
num_channels=signal.num_channels,
)["signal"]
return {"crosstalk_signal": crosstalk_signal, "snr": snr}
def _transform(self, signal, crosstalk_signal, snr):
# Clone bg_signal so that transform can be repeatedly applied
# to different signals with the same effect.
loudness = signal.loudness()
mix = signal.mix(crosstalk_signal.clone(), snr)
mix.normalize(loudness)
return mix
class RoomImpulseResponse(BaseTransform):
"""Convolves signal with a room impulse response, at a specified
direct-to-reverberant ratio, with equalization applied. Room impulse
response data is drawn from a CSV file that was produced via
:py:func:`audiotools.data.preprocess.create_csv`.
This transform calls :py:func:`audiotools.core.effects.EffectMixin.apply_ir`
under the hood.
Parameters
----------
drr : tuple, optional
_description_, by default ("uniform", 0.0, 30.0)
sources : List[str], optional
Sources containing folders, or CSVs with paths to audio files,
by default None
weights : List[float], optional
Weights to sample audio files from each source, by default None
eq_amount : tuple, optional
Amount of equalization to apply, by default ("const", 1.0)
n_bands : int, optional
Number of bands in equalizer, by default 6
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
use_original_phase : bool, optional
Whether or not to use the original phase, by default False
offset : float, optional
Offset from each impulse response file to use, by default 0.0
duration : float, optional
Duration of each impulse response, by default 1.0
"""
def __init__(
self,
drr: tuple = ("uniform", 0.0, 30.0),
sources: List[str] = None,
weights: List[float] = None,
eq_amount: tuple = ("const", 1.0),
n_bands: int = 6,
name: str = None,
prob: float = 1.0,
use_original_phase: bool = False,
offset: float = 0.0,
duration: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.drr = drr
self.eq_amount = eq_amount
self.n_bands = n_bands
self.use_original_phase = use_original_phase
self.loader = AudioLoader(sources, weights)
self.offset = offset
self.duration = duration
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
eq_amount = util.sample_from_dist(self.eq_amount, state)
eq = -eq_amount * state.rand(self.n_bands)
drr = util.sample_from_dist(self.drr, state)
ir_signal = self.loader(
state,
signal.sample_rate,
offset=self.offset,
duration=self.duration,
loudness_cutoff=None,
num_channels=signal.num_channels,
)["signal"]
ir_signal.zero_pad_to(signal.sample_rate)
return {"eq": eq, "ir_signal": ir_signal, "drr": drr}
def _transform(self, signal, ir_signal, drr, eq):
# Clone ir_signal so that transform can be repeatedly applied
# to different signals with the same effect.
return signal.apply_ir(
ir_signal.clone(), drr, eq, use_original_phase=self.use_original_phase
)
class VolumeChange(BaseTransform):
"""Changes the volume of the input signal.
Uses :py:func:`audiotools.core.effects.EffectMixin.volume_change`.
Parameters
----------
db : tuple, optional
Change in volume in decibels, by default ("uniform", -12.0, 0.0)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
db: tuple = ("uniform", -12.0, 0.0),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.db = db
def _instantiate(self, state: RandomState):
return {"db": util.sample_from_dist(self.db, state)}
def _transform(self, signal, db):
return signal.volume_change(db)
class VolumeNorm(BaseTransform):
"""Normalizes the volume of the excerpt to a specified decibel.
Uses :py:func:`audiotools.core.effects.EffectMixin.normalize`.
Parameters
----------
db : tuple, optional
dB to normalize signal to, by default ("const", -24)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
db: tuple = ("const", -24),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.db = db
def _instantiate(self, state: RandomState):
return {"db": util.sample_from_dist(self.db, state)}
def _transform(self, signal, db):
return signal.normalize(db)
class GlobalVolumeNorm(BaseTransform):
"""Similar to :py:func:`audiotools.data.transforms.VolumeNorm`, this
transform also normalizes the volume of a signal, but it uses
the volume of the entire audio file the loaded excerpt comes from,
rather than the volume of just the excerpt. The volume of the
entire audio file is expected in ``signal.metadata["loudness"]``.
If loading audio from a CSV generated by :py:func:`audiotools.data.preprocess.create_csv`
with ``loudness = True``, like the following:
.. csv-table::
:header: path,loudness
daps/produced/f1_script1_produced.wav,-16.299999237060547
daps/produced/f1_script2_produced.wav,-16.600000381469727
daps/produced/f1_script3_produced.wav,-17.299999237060547
daps/produced/f1_script4_produced.wav,-16.100000381469727
daps/produced/f1_script5_produced.wav,-16.700000762939453
daps/produced/f3_script1_produced.wav,-16.5
The ``AudioLoader`` will automatically load the loudness column into
the metadata of the signal.
Uses :py:func:`audiotools.core.effects.EffectMixin.volume_change`.
Parameters
----------
db : tuple, optional
dB to normalize signal to, by default ("const", -24)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
db: tuple = ("const", -24),
name: str = None,
prob: float = 1.0,
):
super().__init__(name=name, prob=prob)
self.db = db
def _instantiate(self, state: RandomState, signal: AudioSignal):
if "loudness" not in signal.metadata:
db_change = 0.0
elif float(signal.metadata["loudness"]) == float("-inf"):
db_change = 0.0
else:
db = util.sample_from_dist(self.db, state)
db_change = db - float(signal.metadata["loudness"])
return {"db": db_change}
def _transform(self, signal, db):
return signal.volume_change(db)
class Silence(BaseTransform):
"""Zeros out the signal with some probability.
Parameters
----------
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 0.1
"""
def __init__(self, name: str = None, prob: float = 0.1):
super().__init__(name=name, prob=prob)
def _transform(self, signal):
_loudness = signal._loudness
signal = AudioSignal(
torch.zeros_like(signal.audio_data),
sample_rate=signal.sample_rate,
stft_params=signal.stft_params,
)
# So that the amound of noise added is as if it wasn't silenced.
# TODO: improve this hack
signal._loudness = _loudness
return signal
class LowPass(BaseTransform):
"""Applies a LowPass filter.
Uses :py:func:`audiotools.core.dsp.DSPMixin.low_pass`.
Parameters
----------
cutoff : tuple, optional
Cutoff frequency distribution,
by default ``("choice", [4000, 8000, 16000])``
zeros : int, optional
Number of zero-crossings in filter, argument to
``julius.LowPassFilters``, by default 51
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
cutoff: tuple = ("choice", [4000, 8000, 16000]),
zeros: int = 51,
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.cutoff = cutoff
self.zeros = zeros
def _instantiate(self, state: RandomState):
return {"cutoff": util.sample_from_dist(self.cutoff, state)}
def _transform(self, signal, cutoff):
return signal.low_pass(cutoff, zeros=self.zeros)
class HighPass(BaseTransform):
"""Applies a HighPass filter.
Uses :py:func:`audiotools.core.dsp.DSPMixin.high_pass`.
Parameters
----------
cutoff : tuple, optional
Cutoff frequency distribution,
by default ``("choice", [50, 100, 250, 500, 1000])``
zeros : int, optional
Number of zero-crossings in filter, argument to
``julius.LowPassFilters``, by default 51
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
cutoff: tuple = ("choice", [50, 100, 250, 500, 1000]),
zeros: int = 51,
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.cutoff = cutoff
self.zeros = zeros
def _instantiate(self, state: RandomState):
return {"cutoff": util.sample_from_dist(self.cutoff, state)}
def _transform(self, signal, cutoff):
return signal.high_pass(cutoff, zeros=self.zeros)
class RescaleAudio(BaseTransform):
"""Rescales the audio so it is in between ``-val`` and ``val``
only if the original audio exceeds those bounds. Useful if
transforms have caused the audio to clip.
Uses :py:func:`audiotools.core.effects.EffectMixin.ensure_max_of_audio`.
Parameters
----------
val : float, optional
Max absolute value of signal, by default 1.0
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(self, val: float = 1.0, name: str = None, prob: float = 1):
super().__init__(name=name, prob=prob)
self.val = val
def _transform(self, signal):
return signal.ensure_max_of_audio(self.val)
class ShiftPhase(SpectralTransform):
"""Shifts the phase of the audio.
Uses :py:func:`audiotools.core.dsp.DSPMixin.shift)phase`.
Parameters
----------
shift : tuple, optional
How much to shift phase by, by default ("uniform", -np.pi, np.pi)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
shift: tuple = ("uniform", -np.pi, np.pi),
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.shift = shift
def _instantiate(self, state: RandomState):
return {"shift": util.sample_from_dist(self.shift, state)}
def _transform(self, signal, shift):
return signal.shift_phase(shift)
class InvertPhase(ShiftPhase):
"""Inverts the phase of the audio.
Uses :py:func:`audiotools.core.dsp.DSPMixin.shift_phase`.
Parameters
----------
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(self, name: str = None, prob: float = 1):
super().__init__(shift=("const", np.pi), name=name, prob=prob)
class CorruptPhase(SpectralTransform):
"""Corrupts the phase of the audio.
Uses :py:func:`audiotools.core.dsp.DSPMixin.corrupt_phase`.
Parameters
----------
scale : tuple, optional
How much to corrupt phase by, by default ("uniform", 0, np.pi)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self, scale: tuple = ("uniform", 0, np.pi), name: str = None, prob: float = 1
):
super().__init__(name=name, prob=prob)
self.scale = scale
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
scale = util.sample_from_dist(self.scale, state)
corruption = state.normal(scale=scale, size=signal.phase.shape[1:])
return {"corruption": corruption.astype("float32")}
def _transform(self, signal, corruption):
return signal.shift_phase(shift=corruption)
class FrequencyMask(SpectralTransform):
"""Masks a band of frequencies at a center frequency
from the audio.
Uses :py:func:`audiotools.core.dsp.DSPMixin.mask_frequencies`.
Parameters
----------
f_center : tuple, optional
Center frequency between 0.0 and 1.0 (Nyquist), by default ("uniform", 0.0, 1.0)
f_width : tuple, optional
Width of zero'd out band, by default ("const", 0.1)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
f_center: tuple = ("uniform", 0.0, 1.0),
f_width: tuple = ("const", 0.1),
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.f_center = f_center
self.f_width = f_width
def _instantiate(self, state: RandomState, signal: AudioSignal):
f_center = util.sample_from_dist(self.f_center, state)
f_width = util.sample_from_dist(self.f_width, state)
fmin = max(f_center - (f_width / 2), 0.0)
fmax = min(f_center + (f_width / 2), 1.0)
fmin_hz = (signal.sample_rate / 2) * fmin
fmax_hz = (signal.sample_rate / 2) * fmax
return {"fmin_hz": fmin_hz, "fmax_hz": fmax_hz}
def _transform(self, signal, fmin_hz: float, fmax_hz: float):
return signal.mask_frequencies(fmin_hz=fmin_hz, fmax_hz=fmax_hz)
class TimeMask(SpectralTransform):
"""Masks out contiguous time-steps from signal.
Uses :py:func:`audiotools.core.dsp.DSPMixin.mask_timesteps`.
Parameters
----------
t_center : tuple, optional
Center time in terms of 0.0 and 1.0 (duration of signal),
by default ("uniform", 0.0, 1.0)
t_width : tuple, optional
Width of dropped out portion, by default ("const", 0.025)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
t_center: tuple = ("uniform", 0.0, 1.0),
t_width: tuple = ("const", 0.025),
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.t_center = t_center
self.t_width = t_width
def _instantiate(self, state: RandomState, signal: AudioSignal):
t_center = util.sample_from_dist(self.t_center, state)
t_width = util.sample_from_dist(self.t_width, state)
tmin = max(t_center - (t_width / 2), 0.0)
tmax = min(t_center + (t_width / 2), 1.0)
tmin_s = signal.signal_duration * tmin
tmax_s = signal.signal_duration * tmax
return {"tmin_s": tmin_s, "tmax_s": tmax_s}
def _transform(self, signal, tmin_s: float, tmax_s: float):
return signal.mask_timesteps(tmin_s=tmin_s, tmax_s=tmax_s)
class MaskLowMagnitudes(SpectralTransform):
"""Masks low magnitude regions out of signal.
Uses :py:func:`audiotools.core.dsp.DSPMixin.mask_low_magnitudes`.
Parameters
----------
db_cutoff : tuple, optional
Decibel value for which things below it will be masked away,
by default ("uniform", -10, 10)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
db_cutoff: tuple = ("uniform", -10, 10),
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.db_cutoff = db_cutoff
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
return {"db_cutoff": util.sample_from_dist(self.db_cutoff, state)}
def _transform(self, signal, db_cutoff: float):
return signal.mask_low_magnitudes(db_cutoff)
class Smoothing(BaseTransform):
"""Convolves the signal with a smoothing window.
Uses :py:func:`audiotools.core.effects.EffectMixin.convolve`.
Parameters
----------
window_type : tuple, optional
Type of window to use, by default ("const", "average")
window_length : tuple, optional
Length of smoothing window, by
default ("choice", [8, 16, 32, 64, 128, 256, 512])
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
window_type: tuple = ("const", "average"),
window_length: tuple = ("choice", [8, 16, 32, 64, 128, 256, 512]),
name: str = None,
prob: float = 1,
):
super().__init__(name=name, prob=prob)
self.window_type = window_type
self.window_length = window_length
def _instantiate(self, state: RandomState, signal: AudioSignal = None):
window_type = util.sample_from_dist(self.window_type, state)
window_length = util.sample_from_dist(self.window_length, state)
window = signal.get_window(
window_type=window_type, window_length=window_length, device="cpu"
)
return {"window": AudioSignal(window, signal.sample_rate)}
def _transform(self, signal, window):
sscale = signal.audio_data.abs().max(dim=-1, keepdim=True).values
sscale[sscale == 0.0] = 1.0
out = signal.convolve(window)
oscale = out.audio_data.abs().max(dim=-1, keepdim=True).values
oscale[oscale == 0.0] = 1.0
out = out * (sscale / oscale)
return out
class TimeNoise(TimeMask):
"""Similar to :py:func:`audiotools.data.transforms.TimeMask`, but
replaces with noise instead of zeros.
Parameters
----------
t_center : tuple, optional
Center time in terms of 0.0 and 1.0 (duration of signal),
by default ("uniform", 0.0, 1.0)
t_width : tuple, optional
Width of dropped out portion, by default ("const", 0.025)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
t_center: tuple = ("uniform", 0.0, 1.0),
t_width: tuple = ("const", 0.025),
name: str = None,
prob: float = 1,
):
super().__init__(t_center=t_center, t_width=t_width, name=name, prob=prob)
def _transform(self, signal, tmin_s: float, tmax_s: float):
signal = signal.mask_timesteps(tmin_s=tmin_s, tmax_s=tmax_s, val=0.0)
mag, phase = signal.magnitude, signal.phase
mag_r, phase_r = torch.randn_like(mag), torch.randn_like(phase)
mask = (mag == 0.0) * (phase == 0.0)
mag[mask] = mag_r[mask]
phase[mask] = phase_r[mask]
signal.magnitude = mag
signal.phase = phase
return signal
class FrequencyNoise(FrequencyMask):
"""Similar to :py:func:`audiotools.data.transforms.FrequencyMask`, but
replaces with noise instead of zeros.
Parameters
----------
f_center : tuple, optional
Center frequency between 0.0 and 1.0 (Nyquist), by default ("uniform", 0.0, 1.0)
f_width : tuple, optional
Width of zero'd out band, by default ("const", 0.1)
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
f_center: tuple = ("uniform", 0.0, 1.0),
f_width: tuple = ("const", 0.1),
name: str = None,
prob: float = 1,
):
super().__init__(f_center=f_center, f_width=f_width, name=name, prob=prob)
def _transform(self, signal, fmin_hz: float, fmax_hz: float):
signal = signal.mask_frequencies(fmin_hz=fmin_hz, fmax_hz=fmax_hz)
mag, phase = signal.magnitude, signal.phase
mag_r, phase_r = torch.randn_like(mag), torch.randn_like(phase)
mask = (mag == 0.0) * (phase == 0.0)
mag[mask] = mag_r[mask]
phase[mask] = phase_r[mask]
signal.magnitude = mag
signal.phase = phase
return signal
class SpectralDenoising(Equalizer):
"""Applies denoising algorithm detailed in
:py:func:`audiotools.ml.layers.spectral_gate.SpectralGate`,
using a randomly generated noise signal for denoising.
Parameters
----------
eq_amount : tuple, optional
Amount of eq to apply to noise signal, by default ("const", 1.0)
denoise_amount : tuple, optional
Amount to denoise by, by default ("uniform", 0.8, 1.0)
nz_volume : float, optional
Volume of noise to denoise with, by default -40
n_bands : int, optional
Number of bands in equalizer, by default 6
n_freq : int, optional
Number of frequency bins to smooth by, by default 3
n_time : int, optional
Number of time bins to smooth by, by default 5
name : str, optional
Name of this transform, used to identify it in the dictionary
produced by ``self.instantiate``, by default None
prob : float, optional
Probability of applying this transform, by default 1.0
"""
def __init__(
self,
eq_amount: tuple = ("const", 1.0),
denoise_amount: tuple = ("uniform", 0.8, 1.0),
nz_volume: float = -40,
n_bands: int = 6,
n_freq: int = 3,
n_time: int = 5,
name: str = None,
prob: float = 1,
):
super().__init__(eq_amount=eq_amount, n_bands=n_bands, name=name, prob=prob)
self.nz_volume = nz_volume
self.denoise_amount = denoise_amount
self.spectral_gate = ml.layers.SpectralGate(n_freq, n_time)
def _transform(self, signal, nz, eq, denoise_amount):
nz = nz.normalize(self.nz_volume).equalizer(eq)
self.spectral_gate = self.spectral_gate.to(signal.device)
signal = self.spectral_gate(signal, nz, denoise_amount)
return signal
def _instantiate(self, state: RandomState):
kwargs = super()._instantiate(state)
kwargs["denoise_amount"] = util.sample_from_dist(self.denoise_amount, state)
kwargs["nz"] = AudioSignal(state.randn(22050), 44100)
return kwargs