Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from .chroma import ChromaExtractor | |
from .energy import EnergyExtractor | |
from .voice import VoiceConversionExtractor | |
from .mbenergy import MultibandEnergyExtractor | |
class Conditioner(nn.Module): | |
def __init__(self, | |
condition_type, | |
**kwargs | |
): | |
super().__init__() | |
if condition_type == 'energy': | |
self.conditioner = EnergyExtractor(**kwargs) | |
elif condition_type == 'chroma': | |
self.conditioner = ChromaExtractor(**kwargs) | |
elif condition_type == 'vc': | |
self.conditioner = VoiceConversionExtractor(**kwargs) | |
elif condition_type == 'mb_energy': | |
self.conditioner = MultibandEnergyExtractor(**kwargs) | |
else: | |
raise NotImplementedError | |
def forward(self, waveform, latent_shape): | |
# B T C | |
condition = self.conditioner(waveform) | |
# B C T | |
condition = condition.permute(0, 2, 1).contiguous() | |
if len(latent_shape) == 4: | |
# 2d spectrogram B C T F | |
assert (condition.shape[-1] % latent_shape[-2]) == 0 | |
X = latent_shape[-1] * condition.shape[-1] // latent_shape[-2] | |
# copy on F direction | |
condition = condition.unsqueeze(-1).expand(-1, -1, -1, X) | |
elif len(latent_shape) == 3: | |
condition = condition | |
else: | |
raise NotImplementedError | |
return condition | |
if __name__ == '__main__': | |
conditioner = Conditioner(condition_type='energy', | |
hop_size=160, window_size=1024, padding='reflect', | |
min_db=-80, norm=True) | |
audio = torch.rand(4, 16000) # Example audio signal | |
energy = conditioner(audio, (4, 8, 100, 64)) |