OpenSound's picture
Upload 211 files
9d3cb0a verified
raw
history blame
3.73 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import julius
import soundfile as sf
class MultibandEnergyExtractor(nn.Module):
def __init__(self, hop_size: int = 512, window_size: int = 1024,
padding: str = 'reflect', min_db: float = -60,
norm: bool = True, quantize_levels: int = None,
n_bands: int = 8, control_bands: int = 4,
sample_rate: int = 24000,):
super().__init__()
self.hop_size = hop_size
self.window_size = window_size
self.padding = padding
self.min_db = min_db
self.norm = norm
self.quantize_levels = quantize_levels
self.n_bands = n_bands
self.control_bands = control_bands
self.sample_rate = sample_rate
def forward(self, audio: torch.Tensor) -> torch.Tensor:
# Split the audio into frequency bands
audio = julius.split_bands(audio, n_bands=self.n_bands,
sample_rate=self.sample_rate)[:self.control_bands].transpose(0, 1)
B, C, _ = audio.shape
for i in range(C):
sf.write(f'output_{i}.wav', audio[0][i], self.sample_rate)
# Compute number of frames
n_frames = int(audio.size(-1) // self.hop_size)
# Pad the audio signal
pad_amount = (self.window_size - self.hop_size) // 2
audio_padded = F.pad(audio, (pad_amount, pad_amount), mode=self.padding)
# Square the padded audio signal
audio_squared = audio_padded ** 2
# Compute the mean energy for each frame using unfold and mean
energy = audio_squared.unfold(dimension=-1, size=self.window_size, step=self.hop_size)
energy = energy[:, :, :n_frames]
print(energy.shape)
energy = energy.mean(dim=-1)
print(energy.shape)
# Compute the square root of the mean energy to get the RMS energy
# energy = torch.sqrt(energy)
# Normalize the energy using the min_db value
gain = torch.maximum(energy, torch.tensor(np.power(10, self.min_db / 10), device=audio.device))
gain_db = 10 * torch.log10(gain)
if self.norm:
# Find the min and max of gain_db
# min_gain_db = torch.min(gain_db)
min_gain_db = self.min_db
max_gain_db = torch.amax(gain_db, dim=(-1, -2), keepdim=True)
# Avoid numerical error by adding a small epsilon to the denominator
epsilon = 1e-8
gain_db = (gain_db - min_gain_db) / (max_gain_db - min_gain_db + epsilon)
if self.quantize_levels is not None:
# Quantize the result to the given number of levels
gain_db = torch.round(gain_db * (self.quantize_levels - 1)) / (self.quantize_levels - 1)
return gain_db.transpose(-1, -2)
if __name__ == "__main__":
energy_extractor = MultibandEnergyExtractor(hop_size=320, window_size=1280,
padding='reflect',
min_db=-60, norm=True)
audio = torch.rand(4, 24000)
energy = energy_extractor(audio)
print(energy.shape)
import librosa
import matplotlib.pyplot as plt
a1, _ = librosa.load('eg2.wav', sr=24000)
audio = torch.tensor(a1[:5*16000]).unsqueeze(0)
energy = energy_extractor(audio)
print(energy.shape)
# Plot the energy for each audio sample
plt.figure(figsize=(12, 6))
for i in range(energy.shape[-1]):
plt.plot(energy[0, :, i].cpu().numpy(), label=f'Band {i+1}')
plt.xlabel('Frame')
plt.ylabel('Energy (dB)')
plt.title('Energy over Time')
plt.legend()
plt.savefig('debug.png')