Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from .utils.modules import PatchEmbed, TimestepEmbedder | |
from .utils.modules import PE_wrapper, RMSNorm | |
from .blocks import DiTBlock, JointDiTBlock | |
from .utils.span_mask import compute_mask_indices | |
class DiTControlNetEmbed(nn.Module): | |
def __init__(self, in_chans, out_chans, blocks, | |
cond_mask=False, cond_mask_prob=None, | |
cond_mask_ratio=None, cond_mask_span=None): | |
super().__init__() | |
self.conv_in = nn.Conv1d(in_chans, blocks[0], kernel_size=1) | |
self.cond_mask = cond_mask | |
if self.cond_mask: | |
self.mask_embed = nn.Parameter(torch.zeros((blocks[0]))) | |
self.mask_prob = cond_mask_prob | |
self.mask_ratio = cond_mask_ratio | |
self.mask_span = cond_mask_span | |
blocks[0] = blocks[0] + 1 | |
conv_blocks = [] | |
for i in range(len(blocks) - 1): | |
channel_in = blocks[i] | |
channel_out = blocks[i + 1] | |
block = nn.Sequential( | |
nn.Conv1d(channel_in, channel_in, kernel_size=3, padding=1), | |
nn.SiLU(), | |
nn.Conv1d(channel_in, channel_out, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(),) | |
conv_blocks.append(block) | |
self.blocks = nn.ModuleList(conv_blocks) | |
self.conv_out = nn.Conv1d(blocks[-1], out_chans, kernel_size=1) | |
nn.init.zeros_(self.conv_out.weight) | |
nn.init.zeros_(self.conv_out.bias) | |
def random_masking(self, gt, mask_ratios, mae_mask_infer=None): | |
B, D, L = gt.shape | |
if mae_mask_infer is None: | |
# mask = torch.rand(B, L).to(gt.device) < mask_ratios.unsqueeze(1) | |
mask_ratios = mask_ratios.cpu().numpy() | |
mask = compute_mask_indices(shape=[B, L], | |
padding_mask=None, | |
mask_prob=mask_ratios, | |
mask_length=self.mask_span, | |
mask_type="static", | |
mask_other=0.0, | |
min_masks=1, | |
no_overlap=False, | |
min_space=0,) | |
# only apply mask to some batches | |
mask_batch = torch.rand(B) < self.mask_prob | |
mask[~mask_batch] = False | |
mask = mask.unsqueeze(1).expand_as(gt) | |
else: | |
mask = mae_mask_infer | |
mask = mask.expand_as(gt) | |
gt[mask] = self.mask_embed.view(1, D, 1).expand_as(gt)[mask].type_as(gt) | |
return gt, mask.type_as(gt) | |
def forward(self, conditioning, cond_mask_infer=None): | |
embedding = self.conv_in(conditioning) | |
if self.cond_mask: | |
B, D, L = embedding.shape | |
if not self.training and cond_mask_infer is None: | |
cond_mask_infer = torch.zeros_like(embedding).bool() | |
mask_ratios = torch.FloatTensor(B).uniform_(*self.mask_ratio).to(embedding.device) | |
embedding, cond_mask = self.random_masking(embedding, mask_ratios, cond_mask_infer) | |
embedding = torch.cat([embedding, cond_mask[:, 0:1, :]], dim=1) | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = self.conv_out(embedding) | |
# B, L, C | |
embedding = embedding.transpose(1, 2).contiguous() | |
return embedding | |
class DiTControlNet(nn.Module): | |
def __init__(self, | |
img_size=(224, 224), patch_size=16, in_chans=3, | |
input_type='2d', out_chans=None, | |
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., | |
qkv_bias=False, qk_scale=None, qk_norm=None, | |
act_layer='gelu', norm_layer='layernorm', | |
context_norm=False, | |
use_checkpoint=False, | |
# time fusion ada or token | |
time_fusion='token', | |
ada_lora_rank=None, ada_lora_alpha=None, | |
cls_dim=None, | |
# max length is only used for concat | |
context_dim=768, context_fusion='concat', | |
context_max_length=128, context_pe_method='sinu', | |
pe_method='abs', rope_mode='none', | |
use_conv=True, | |
skip=True, skip_norm=True, | |
# controlnet configs | |
cond_in=None, cond_blocks=None, | |
cond_mask=False, cond_mask_prob=None, | |
cond_mask_ratio=None, cond_mask_span=None, | |
**kwargs): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim | |
# input | |
self.in_chans = in_chans | |
self.input_type = input_type | |
if self.input_type == '2d': | |
num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) | |
elif self.input_type == '1d': | |
num_patches = img_size // patch_size | |
self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans, | |
embed_dim=embed_dim, input_type=input_type) | |
out_chans = in_chans if out_chans is None else out_chans | |
self.out_chans = out_chans | |
# position embedding | |
self.rope = rope_mode | |
self.x_pe = PE_wrapper(dim=embed_dim, method=pe_method, | |
length=num_patches) | |
print(f'x position embedding: {pe_method}') | |
print(f'rope mode: {self.rope}') | |
# time embed | |
self.time_embed = TimestepEmbedder(embed_dim) | |
self.time_fusion = time_fusion | |
self.use_adanorm = False | |
# cls embed | |
if cls_dim is not None: | |
self.cls_embed = nn.Sequential( | |
nn.Linear(cls_dim, embed_dim, bias=True), | |
nn.SiLU(), | |
nn.Linear(embed_dim, embed_dim, bias=True),) | |
else: | |
self.cls_embed = None | |
# time fusion | |
if time_fusion == 'token': | |
# put token at the beginning of sequence | |
self.extras = 2 if self.cls_embed else 1 | |
self.time_pe = PE_wrapper(dim=embed_dim, method='abs', length=self.extras) | |
elif time_fusion in ['ada', 'ada_single', 'ada_lora', 'ada_lora_bias']: | |
self.use_adanorm = True | |
# aviod repetitive silu for each adaln block | |
self.time_act = nn.SiLU() | |
self.extras = 0 | |
if time_fusion in ['ada_single', 'ada_lora', 'ada_lora_bias']: | |
# shared adaln | |
self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True) | |
else: | |
self.time_ada = None | |
else: | |
raise NotImplementedError | |
print(f'time fusion mode: {self.time_fusion}') | |
# context | |
# use a simple projection | |
self.use_context = False | |
self.context_cross = False | |
self.context_max_length = context_max_length | |
self.context_fusion = 'none' | |
if context_dim is not None: | |
self.use_context = True | |
self.context_embed = nn.Sequential( | |
nn.Linear(context_dim, embed_dim, bias=True), | |
nn.SiLU(), | |
nn.Linear(embed_dim, embed_dim, bias=True),) | |
self.context_fusion = context_fusion | |
if context_fusion == 'concat' or context_fusion == 'joint': | |
self.extras += context_max_length | |
self.context_pe = PE_wrapper(dim=embed_dim, | |
method=context_pe_method, | |
length=context_max_length) | |
# no cross attention layers | |
context_dim = None | |
elif context_fusion == 'cross': | |
self.context_pe = PE_wrapper(dim=embed_dim, | |
method=context_pe_method, | |
length=context_max_length) | |
self.context_cross = True | |
context_dim = embed_dim | |
else: | |
raise NotImplementedError | |
print(f'context fusion mode: {context_fusion}') | |
print(f'context position embedding: {context_pe_method}') | |
if self.context_fusion == 'joint': | |
Block = JointDiTBlock | |
else: | |
Block = DiTBlock | |
# norm layers | |
if norm_layer == 'layernorm': | |
norm_layer = nn.LayerNorm | |
elif norm_layer == 'rmsnorm': | |
norm_layer = RMSNorm | |
else: | |
raise NotImplementedError | |
self.in_blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, context_dim=context_dim, num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, qk_norm=qk_norm, | |
act_layer=act_layer, norm_layer=norm_layer, | |
time_fusion=time_fusion, | |
ada_lora_rank=ada_lora_rank, ada_lora_alpha=ada_lora_alpha, | |
skip=False, skip_norm=False, | |
rope_mode=self.rope, | |
context_norm=context_norm, | |
use_checkpoint=use_checkpoint) | |
for _ in range(depth // 2)]) | |
self.controlnet_pre = DiTControlNetEmbed(in_chans=cond_in, out_chans=embed_dim, | |
blocks=cond_blocks, | |
cond_mask=cond_mask, | |
cond_mask_prob=cond_mask_prob, | |
cond_mask_ratio=cond_mask_ratio, | |
cond_mask_span=cond_mask_span) | |
controlnet_zero_blocks = [] | |
for i in range(depth // 2): | |
block = nn.Linear(embed_dim, embed_dim) | |
nn.init.zeros_(block.weight) | |
nn.init.zeros_(block.bias) | |
controlnet_zero_blocks.append(block) | |
self.controlnet_zero_blocks = nn.ModuleList(controlnet_zero_blocks) | |
print('ControlNet ready \n') | |
def set_trainable(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
# only train input_proj, blocks, and output_proj | |
for module_name in ['controlnet_pre', 'in_blocks', 'controlnet_zero_blocks']: | |
module = getattr(self, module_name, None) | |
if module is not None: | |
for param in module.parameters(): | |
param.requires_grad = True | |
module.train() | |
else: | |
print(f'\n!!!warning missing trainable blocks: {module_name}!!!\n') | |
def forward(self, x, timesteps, context, | |
x_mask=None, context_mask=None, | |
cls_token=None, | |
condition=None, cond_mask_infer=None, | |
conditioning_scale=1.0): | |
# make it compatible with int time step during inference | |
if timesteps.dim() == 0: | |
timesteps = timesteps.expand(x.shape[0]).to(x.device, dtype=torch.long) | |
x = self.patch_embed(x) | |
# add condition to x | |
condition = self.controlnet_pre(condition) | |
x = x + condition | |
x = self.x_pe(x) | |
B, L, D = x.shape | |
if self.use_context: | |
context_token = self.context_embed(context) | |
context_token = self.context_pe(context_token) | |
if self.context_fusion == 'concat' or self.context_fusion == 'joint': | |
x, x_mask = self._concat_x_context(x=x, context=context_token, | |
x_mask=x_mask, | |
context_mask=context_mask) | |
context_token, context_mask = None, None | |
else: | |
context_token, context_mask = None, None | |
time_token = self.time_embed(timesteps) | |
if self.cls_embed: | |
cls_token = self.cls_embed(cls_token) | |
time_ada = None | |
if self.use_adanorm: | |
if self.cls_embed: | |
time_token = time_token + cls_token | |
time_token = self.time_act(time_token) | |
if self.time_ada is not None: | |
time_ada = self.time_ada(time_token) | |
else: | |
time_token = time_token.unsqueeze(dim=1) | |
if self.cls_embed: | |
cls_token = cls_token.unsqueeze(dim=1) | |
time_token = torch.cat([time_token, cls_token], dim=1) | |
time_token = self.time_pe(time_token) | |
x = torch.cat((time_token, x), dim=1) | |
if x_mask is not None: | |
x_mask = torch.cat( | |
[torch.ones(B, time_token.shape[1], device=x_mask.device).bool(), | |
x_mask], dim=1) | |
time_token = None | |
skips = [] | |
for blk in self.in_blocks: | |
x = blk(x=x, time_token=time_token, time_ada=time_ada, | |
skip=None, context=context_token, | |
x_mask=x_mask, context_mask=context_mask, | |
extras=self.extras) | |
skips.append(x) | |
controlnet_skips = [] | |
for skip, controlnet_block in zip(skips, self.controlnet_zero_blocks): | |
controlnet_skips.append(controlnet_block(skip) * conditioning_scale) | |
return controlnet_skips |