import gradio as gr import time from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("IEEEVITPune-AI-Team/ChatbotAlpha0.7") model = AutoModelForCausalLM.from_pretrained("IEEEVITPune-AI-Team/ChatbotAlpha0.7") # Define function to generate response def generate_response(message, history, system_prompt, tokens): # Concatenate system prompt and user message input_text = f"{system_prompt} {message}" # Tokenize input text input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate response output = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Define Gradio interface with gr.Blocks() as demo: system_prompt = gr.Textbox("You are helpful AI.", label="System Prompt") slider = gr.Slider(10, 100, render=False, label="Number of Tokens") gr.ChatInterface( generate_response, inputs=["text", "text", system_prompt, slider], outputs="text" ) # Launch Gradio interface demo.launch()