Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,141 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
app = Flask(__name__)
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b", use_fast=False)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b")
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
-
model.to(device)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
MAX_ASSISTANT_LENGTH = 100
|
14 |
MAX_INPUT_LENGTH = 1024
|
15 |
INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n入力:\n{input}\n[SEP]\n応答:\n'
|
16 |
NO_INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n応答:\n'
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def prepare_input(role_instruction, conversation_history, new_conversation):
|
|
|
33 |
instruction = "".join([f"{text}\n" for text in role_instruction])
|
34 |
instruction += "\n".join(conversation_history)
|
35 |
input_text = f"User:{new_conversation}"
|
36 |
return INPUT_PROMPT.format(instruction=instruction, input=input_text)
|
37 |
|
38 |
def format_output(output):
|
|
|
39 |
return output.lstrip("<s>").rstrip("</s>").replace("[SEP]", "").replace("\\n", "\n")
|
40 |
|
41 |
def trim_conversation_history(conversation_history, max_length):
|
|
|
42 |
while len(conversation_history) > 2 and sum([len(tokenizer.encode(text, add_special_tokens=False)) for text in conversation_history]) + max_length > MAX_INPUT_LENGTH:
|
43 |
conversation_history.pop(0)
|
44 |
conversation_history.pop(0)
|
45 |
return conversation_history
|
46 |
|
47 |
def generate_response(role_instruction, conversation_history, new_conversation):
|
|
|
48 |
conversation_history = trim_conversation_history(conversation_history, MAX_ASSISTANT_LENGTH)
|
49 |
input_text = prepare_input(role_instruction, conversation_history, new_conversation)
|
50 |
token_ids = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt")
|
51 |
|
52 |
with torch.no_grad():
|
53 |
output_ids = model.generate(
|
54 |
-
token_ids.to(device),
|
55 |
min_length=len(token_ids[0]),
|
56 |
max_length=min(MAX_INPUT_LENGTH, len(token_ids[0]) + MAX_ASSISTANT_LENGTH),
|
57 |
temperature=0.7,
|
@@ -71,23 +155,30 @@ def generate_response(role_instruction, conversation_history, new_conversation):
|
|
71 |
|
72 |
return formatted_output_all, response
|
73 |
|
74 |
-
@app.route('/
|
75 |
-
def
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
print(f"Error: {e}")
|
90 |
-
return jsonify({"error": "An error occurred"}), 500
|
91 |
|
92 |
if __name__ == '__main__':
|
93 |
-
app.run(host=
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from flask import Flask, request, jsonify, render_template_string
|
4 |
+
import time
|
5 |
+
from flask_sse import sse
|
6 |
+
import redis
|
7 |
|
8 |
+
# Flaskアプリケーションの設定
|
9 |
app = Flask(__name__)
|
10 |
+
app.config["REDIS_URL"] = "redis://localhost:6379/0"
|
11 |
+
app.register_blueprint(sse, url_prefix='/stream')
|
12 |
|
13 |
+
# デバイスの設定
|
|
|
|
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
15 |
|
16 |
+
# トークナイザーとモデルの読み込み
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b", use_fast=False)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b").to(device)
|
19 |
+
|
20 |
+
# 定数
|
21 |
MAX_ASSISTANT_LENGTH = 100
|
22 |
MAX_INPUT_LENGTH = 1024
|
23 |
INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n入力:\n{input}\n[SEP]\n応答:\n'
|
24 |
NO_INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n応答:\n'
|
25 |
|
26 |
+
# HTMLテンプレート
|
27 |
+
HTML_TEMPLATE = """
|
28 |
+
<!DOCTYPE html>
|
29 |
+
<html lang="ja">
|
30 |
+
<head>
|
31 |
+
<meta charset="UTF-8">
|
32 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
33 |
+
<title>Chat Interface</title>
|
34 |
+
<style>
|
35 |
+
body { font-family: Arial, sans-serif; }
|
36 |
+
.container { max-width: 600px; margin: auto; padding: 20px; }
|
37 |
+
.chat-box { border: 1px solid #ccc; padding: 10px; height: 300px; overflow-y: scroll; }
|
38 |
+
.chat-entry { margin-bottom: 10px; }
|
39 |
+
.chat-entry.user { text-align: right; }
|
40 |
+
.input-group { display: flex; }
|
41 |
+
.input-group input { flex: 1; padding: 10px; border: 1px solid #ccc; border-radius: 4px; }
|
42 |
+
.input-group button { padding: 10px; border: none; background-color: #28a745; color: white; cursor: pointer; }
|
43 |
+
.input-group button:hover { background-color: #218838; }
|
44 |
+
</style>
|
45 |
+
</head>
|
46 |
+
<body>
|
47 |
+
<div class="container">
|
48 |
+
<h1>Chat Interface</h1>
|
49 |
+
<div class="chat-box" id="chat-box"></div>
|
50 |
+
<div class="input-group">
|
51 |
+
<input type="text" id="user-input" placeholder="質問を入力してください...">
|
52 |
+
<button onclick="sendMessage()">送信</button>
|
53 |
+
</div>
|
54 |
+
</div>
|
55 |
+
<script>
|
56 |
+
const chatBox = document.getElementById('chat-box');
|
57 |
+
const userInput = document.getElementById('user-input');
|
58 |
+
let conversationHistory = [];
|
59 |
+
|
60 |
+
function addMessageToChat(role, message) {
|
61 |
+
const entry = document.createElement('div');
|
62 |
+
entry.className = 'chat-entry ' + role;
|
63 |
+
entry.textContent = role === 'user' ? 'User: ' + message : 'Assistant: ' + message;
|
64 |
+
chatBox.appendChild(entry);
|
65 |
+
chatBox.scrollTop = chatBox.scrollHeight;
|
66 |
+
}
|
67 |
+
|
68 |
+
function sendMessage() {
|
69 |
+
const message = userInput.value.trim();
|
70 |
+
if (message === '') return;
|
71 |
+
|
72 |
+
addMessageToChat('user', message);
|
73 |
+
userInput.value = '';
|
74 |
+
|
75 |
+
fetch('/generate', {
|
76 |
+
method: 'POST',
|
77 |
+
headers: { 'Content-Type': 'application/json' },
|
78 |
+
body: JSON.stringify({
|
79 |
+
role_instruction: [
|
80 |
+
"User:あなたは「ずんだもん」なのだ。東北ずん子の武器である「ずんだアロー」に変身する妖精またはマスコットなのだ。一人称は「ボク」で語尾に「なのだ」を付けてしゃべるのだ���",
|
81 |
+
"Assistant:了解したのだ!"
|
82 |
+
],
|
83 |
+
conversation_history: conversationHistory,
|
84 |
+
new_conversation: message
|
85 |
+
})
|
86 |
+
})
|
87 |
+
.then(response => response.json())
|
88 |
+
.then(data => {
|
89 |
+
const assistantMessage = data.response.split('Assistant:')[1].trim();
|
90 |
+
addMessageToChat('assistant', assistantMessage);
|
91 |
+
conversationHistory.push('User:' + message);
|
92 |
+
conversationHistory.push('Assistant:' + assistantMessage);
|
93 |
+
})
|
94 |
+
.catch(error => {
|
95 |
+
console.error('Error:', error);
|
96 |
+
alert('エラーが発生しました。コンソールを確認してください。');
|
97 |
+
});
|
98 |
+
}
|
99 |
+
|
100 |
+
// SSEの設定
|
101 |
+
const eventSource = new EventSource("/stream");
|
102 |
+
|
103 |
+
eventSource.onmessage = function(event) {
|
104 |
+
const message = event.data;
|
105 |
+
addMessageToChat('assistant', message);
|
106 |
+
};
|
107 |
+
</script>
|
108 |
+
</body>
|
109 |
+
</html>
|
110 |
+
"""
|
111 |
|
112 |
def prepare_input(role_instruction, conversation_history, new_conversation):
|
113 |
+
"""入力テキストを整形する関数"""
|
114 |
instruction = "".join([f"{text}\n" for text in role_instruction])
|
115 |
instruction += "\n".join(conversation_history)
|
116 |
input_text = f"User:{new_conversation}"
|
117 |
return INPUT_PROMPT.format(instruction=instruction, input=input_text)
|
118 |
|
119 |
def format_output(output):
|
120 |
+
"""生成された出力を整形する関数"""
|
121 |
return output.lstrip("<s>").rstrip("</s>").replace("[SEP]", "").replace("\\n", "\n")
|
122 |
|
123 |
def trim_conversation_history(conversation_history, max_length):
|
124 |
+
"""会話履歴を最大長に収めるために調整する関数"""
|
125 |
while len(conversation_history) > 2 and sum([len(tokenizer.encode(text, add_special_tokens=False)) for text in conversation_history]) + max_length > MAX_INPUT_LENGTH:
|
126 |
conversation_history.pop(0)
|
127 |
conversation_history.pop(0)
|
128 |
return conversation_history
|
129 |
|
130 |
def generate_response(role_instruction, conversation_history, new_conversation):
|
131 |
+
"""新しい会話に対する応答を生成する関数"""
|
132 |
conversation_history = trim_conversation_history(conversation_history, MAX_ASSISTANT_LENGTH)
|
133 |
input_text = prepare_input(role_instruction, conversation_history, new_conversation)
|
134 |
token_ids = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt")
|
135 |
|
136 |
with torch.no_grad():
|
137 |
output_ids = model.generate(
|
138 |
+
token_ids.to(model.device),
|
139 |
min_length=len(token_ids[0]),
|
140 |
max_length=min(MAX_INPUT_LENGTH, len(token_ids[0]) + MAX_ASSISTANT_LENGTH),
|
141 |
temperature=0.7,
|
|
|
155 |
|
156 |
return formatted_output_all, response
|
157 |
|
158 |
+
@app.route('/')
|
159 |
+
def home():
|
160 |
+
"""ホームページをレンダリング"""
|
161 |
+
return render_template_string(HTML_TEMPLATE)
|
162 |
+
|
163 |
+
@app.route('/generate', methods=['POST'])
|
164 |
+
def generate():
|
165 |
+
"""Flaskエンドポイント: /generate"""
|
166 |
+
data = request.json
|
167 |
+
role_instruction = data.get('role_instruction', [])
|
168 |
+
conversation_history = data.get('conversation_history', [])
|
169 |
+
new_conversation = data.get('new_conversation', "")
|
170 |
|
171 |
+
if not role_instruction or not new_conversation:
|
172 |
+
return jsonify({"error": "role_instruction and new_conversation are required fields"}), 400
|
173 |
|
174 |
+
formatted_output_all, response = generate_response(role_instruction, conversation_history, new_conversation)
|
175 |
+
|
176 |
+
# ここでSSEを介してリアルタイムで応答をストリームします
|
177 |
+
for word in response.split():
|
178 |
+
sse.publish({"message": word}, type='message')
|
179 |
+
time.sleep(0.5) # 送信間隔をシミュレート
|
180 |
|
181 |
+
return jsonify({"response": response, "conversation_history": conversation_history})
|
|
|
|
|
182 |
|
183 |
if __name__ == '__main__':
|
184 |
+
app.run(debug=True, host="0.0.0.0", port=7860)
|