Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from typing import List, Optional, Union | |
from models.svd.sgm.util import default | |
from models.svd.sgm.modules.video_attention import SpatialVideoTransformer | |
from models.svd.sgm.modules.diffusionmodules.openaimodel import * | |
from models.diffusion.video_model import VideoResBlock, VideoUNet | |
from einops import repeat, rearrange | |
from models.svd.sgm.modules.diffusionmodules.wrappers import OpenAIWrapper | |
class Merger(nn.Module): | |
""" | |
Merges the controlnet latents with the conditioning embedding (encoding of control frames). | |
""" | |
def __init__(self, merge_mode: str = "addition", input_channels=0, frame_expansion="last_frame") -> None: | |
super().__init__() | |
self.merge_mode = merge_mode | |
self.frame_expansion = frame_expansion | |
def forward(self, x, condition_signal, num_video_frames, num_video_frames_conditional): | |
x = rearrange(x, "(B F) C H W -> B F C H W", F=num_video_frames) | |
condition_signal = rearrange( | |
condition_signal, "(B F) C H W -> B F C H W", B=x.shape[0]) | |
if x.shape[1] - condition_signal.shape[1] > 0: | |
if self.frame_expansion == "last_frame": | |
fillup_latent = repeat( | |
condition_signal[:, -1], "B C H W -> B F C H W", F=x.shape[1] - condition_signal.shape[1]) | |
elif self.frame_expansion == "zero": | |
fillup_latent = torch.zeros( | |
(x.shape[0], num_video_frames-num_video_frames_conditional, *x.shape[2:]), device=x.device, dtype=x.dtype) | |
if self.frame_expansion != "none": | |
condition_signal = torch.cat( | |
[condition_signal, fillup_latent], dim=1) | |
if self.merge_mode == "addition": | |
out = x + condition_signal | |
else: | |
raise NotImplementedError( | |
f"Merging mode {self.merge_mode} not implemented.") | |
out = rearrange(out, "B F C H W -> (B F) C H W") | |
return out | |
class ControlNetConditioningEmbedding(nn.Module): | |
""" | |
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
model) to encode image-space conditions ... into feature maps ..." | |
""" | |
def __init__( | |
self, | |
conditioning_embedding_channels: int, | |
conditioning_channels: int = 3, | |
block_out_channels: Tuple[int] = (16, 32, 96, 256), | |
downsample: bool = True, | |
final_3d_conv: bool = False, | |
zero_init: bool = True, | |
use_controlnet_mask: bool = False, | |
use_normalization: bool = False, | |
): | |
super().__init__() | |
self.final_3d_conv = final_3d_conv | |
self.conv_in = nn.Conv2d( | |
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
if final_3d_conv: | |
print("USING 3D CONV in ControlNET") | |
self.blocks = nn.ModuleList([]) | |
if use_normalization: | |
self.norms = nn.ModuleList([]) | |
self.use_normalization = use_normalization | |
stride = 2 if downsample else 1 | |
for i in range(len(block_out_channels) - 1): | |
channel_in = block_out_channels[i] | |
channel_out = block_out_channels[i + 1] | |
self.blocks.append( | |
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
if use_normalization: | |
self.norms.append(nn.LayerNorm((channel_in))) | |
self.blocks.append( | |
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=stride)) | |
if use_normalization: | |
self.norms.append(nn.LayerNorm((channel_out))) | |
self.conv_out = zero_module( | |
nn.Conv2d( | |
block_out_channels[-1]+int(use_controlnet_mask), conditioning_embedding_channels, kernel_size=3, padding=1), reset=zero_init | |
) | |
def forward(self, conditioning): | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
if self.use_normalization: | |
for block, norm in zip(self.blocks, self.norms): | |
embedding = block(embedding) | |
embedding = rearrange(embedding, " ... C W H -> ... W H C") | |
embedding = norm(embedding) | |
embedding = rearrange(embedding, "... W H C -> ... C W H") | |
embedding = F.silu(embedding) | |
else: | |
for block in self.blocks: | |
embedding = block(embedding) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
model_channels: int, | |
out_channels: int, | |
num_res_blocks: int, | |
attention_resolutions: Union[List[int], int], | |
dropout: float = 0.0, | |
channel_mult: List[int] = (1, 2, 4, 8), | |
conv_resample: bool = True, | |
dims: int = 2, | |
num_classes: Optional[Union[int, str]] = None, | |
use_checkpoint: bool = False, | |
num_heads: int = -1, | |
num_head_channels: int = -1, | |
num_heads_upsample: int = -1, | |
use_scale_shift_norm: bool = False, | |
resblock_updown: bool = False, | |
transformer_depth: Union[List[int], int] = 1, | |
transformer_depth_middle: Optional[int] = None, | |
context_dim: Optional[int] = None, | |
time_downup: bool = False, | |
time_context_dim: Optional[int] = None, | |
extra_ff_mix_layer: bool = False, | |
use_spatial_context: bool = False, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
spatial_transformer_attn_type: str = "softmax", | |
video_kernel_size: Union[int, List[int]] = 3, | |
use_linear_in_transformer: bool = False, | |
adm_in_channels: Optional[int] = None, | |
disable_temporal_crossattention: bool = False, | |
max_ddpm_temb_period: int = 10000, | |
conditioning_embedding_out_channels: Optional[Tuple[int]] = ( | |
16, 32, 96, 256), | |
condition_encoder: str = "", | |
use_controlnet_mask: bool = False, | |
downsample_controlnet_cond: bool = True, | |
use_image_encoder_normalization: bool = False, | |
zero_conv_mode: str = "Identity", | |
frame_expansion: str = "none", | |
merging_mode: str = "addition", | |
): | |
super().__init__() | |
assert zero_conv_mode == "Identity", "Zero convolution not implemented" | |
assert context_dim is not None | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1 | |
if num_head_channels == -1: | |
assert num_heads != -1 | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
if isinstance(transformer_depth, int): | |
transformer_depth = len(channel_mult) * [transformer_depth] | |
transformer_depth_middle = default( | |
transformer_depth_middle, transformer_depth[-1] | |
) | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.dims = dims | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.resblock_updown = resblock_updown | |
self.transformer_depth = transformer_depth | |
self.transformer_depth_middle = transformer_depth_middle | |
self.context_dim = context_dim | |
self.time_downup = time_downup | |
self.time_context_dim = time_context_dim | |
self.extra_ff_mix_layer = extra_ff_mix_layer | |
self.use_spatial_context = use_spatial_context | |
self.merge_strategy = merge_strategy | |
self.merge_factor = merge_factor | |
self.spatial_transformer_attn_type = spatial_transformer_attn_type | |
self.video_kernel_size = video_kernel_size | |
self.use_linear_in_transformer = use_linear_in_transformer | |
self.adm_in_channels = adm_in_channels | |
self.disable_temporal_crossattention = disable_temporal_crossattention | |
self.max_ddpm_temb_period = max_ddpm_temb_period | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
print("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "timestep": | |
self.label_emb = nn.Sequential( | |
Timestep(model_channels), | |
nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
), | |
) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
linear(adm_in_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
else: | |
raise ValueError() | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
def get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=1, | |
context_dim=None, | |
use_checkpoint=False, | |
disabled_sa=False, | |
): | |
return SpatialVideoTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=depth, | |
context_dim=context_dim, | |
time_context_dim=time_context_dim, | |
dropout=dropout, | |
ff_in=extra_ff_mix_layer, | |
use_spatial_context=use_spatial_context, | |
merge_strategy=merge_strategy, | |
merge_factor=merge_factor, | |
checkpoint=use_checkpoint, | |
use_linear=use_linear_in_transformer, | |
attn_mode=spatial_transformer_attn_type, | |
disable_self_attn=disabled_sa, | |
disable_temporal_crossattention=disable_temporal_crossattention, | |
max_time_embed_period=max_ddpm_temb_period, | |
) | |
def get_resblock( | |
merge_factor, | |
merge_strategy, | |
video_kernel_size, | |
ch, | |
time_embed_dim, | |
dropout, | |
out_ch, | |
dims, | |
use_checkpoint, | |
use_scale_shift_norm, | |
down=False, | |
up=False, | |
): | |
return VideoResBlock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=down, | |
up=up, | |
) | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_ch=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth[level], | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, | |
disabled_sa=False, | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
ds *= 2 | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_ch=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, | |
conv_resample, | |
dims=dims, | |
out_channels=out_ch, | |
third_down=time_downup, | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
out_ch=None, | |
dropout=dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth_middle, | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, | |
), | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
out_ch=None, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self._feature_size += ch | |
self.merger = Merger( | |
merge_mode=merging_mode, input_channels=model_channels, frame_expansion=frame_expansion) | |
conditioning_channels = 3 if downsample_controlnet_cond else 4 | |
block_out_channels = (320, 640, 1280, 1280) | |
self.controlnet_cond_embedding = ControlNetConditioningEmbedding( | |
conditioning_embedding_channels=block_out_channels[0], | |
conditioning_channels=conditioning_channels, | |
block_out_channels=conditioning_embedding_out_channels, | |
downsample=downsample_controlnet_cond, | |
final_3d_conv=condition_encoder.endswith("3DConv"), | |
use_controlnet_mask=use_controlnet_mask, | |
use_normalization=use_image_encoder_normalization, | |
) | |
def forward( | |
self, | |
x: th.Tensor, | |
timesteps: th.Tensor, | |
controlnet_cond: th.Tensor, | |
context: Optional[th.Tensor] = None, | |
y: Optional[th.Tensor] = None, | |
time_context: Optional[th.Tensor] = None, | |
num_video_frames: Optional[int] = None, | |
num_video_frames_conditional: Optional[int] = None, | |
image_only_indicator: Optional[th.Tensor] = None, | |
): | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional -> no, relax this TODO" | |
hs = [] | |
t_emb = timestep_embedding( | |
timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
# TODO restrict y to [:self.num_frames] (conditonal frames) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
h = x | |
for idx, module in enumerate(self.input_blocks): | |
h = module( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
) | |
if idx == 0: | |
h = self.merger(h, controlnet_cond, num_video_frames=num_video_frames, | |
num_video_frames_conditional=num_video_frames_conditional) | |
hs.append(h) | |
h = self.middle_block( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
) | |
# 5. Control net blocks | |
down_block_res_samples = hs | |
mid_block_res_sample = h | |
return (down_block_res_samples, mid_block_res_sample) | |
def from_unet(cls, | |
model: OpenAIWrapper, | |
merging_mode: str = "addition", | |
zero_conv_mode: str = "Identity", | |
frame_expansion: str = "none", | |
downsample_controlnet_cond: bool = True, | |
use_image_encoder_normalization: bool = False, | |
use_controlnet_mask: bool = False, | |
condition_encoder: str = "", | |
conditioning_embedding_out_channels: List[int] = None, | |
): | |
unet: VideoUNet = model.diffusion_model | |
controlnet = cls(in_channels=unet.in_channels, | |
model_channels=unet.model_channels, | |
out_channels=unet.out_channels, | |
num_res_blocks=unet.num_res_blocks, | |
attention_resolutions=unet.attention_resolutions, | |
dropout=unet.dropout, | |
channel_mult=unet.channel_mult, | |
conv_resample=unet.conv_resample, | |
dims=unet.dims, | |
num_classes=unet.num_classes, | |
use_checkpoint=unet.use_checkpoint, | |
num_heads=unet.num_heads, | |
num_head_channels=unet.num_head_channels, | |
num_heads_upsample=unet.num_heads_upsample, | |
use_scale_shift_norm=unet.use_scale_shift_norm, | |
resblock_updown=unet.resblock_updown, | |
transformer_depth=unet.transformer_depth, | |
transformer_depth_middle=unet.transformer_depth_middle, | |
context_dim=unet.context_dim, | |
time_downup=unet.time_downup, | |
time_context_dim=unet.time_context_dim, | |
extra_ff_mix_layer=unet.extra_ff_mix_layer, | |
use_spatial_context=unet.use_spatial_context, | |
merge_strategy=unet.merge_strategy, | |
merge_factor=unet.merge_factor, | |
spatial_transformer_attn_type=unet.spatial_transformer_attn_type, | |
video_kernel_size=unet.video_kernel_size, | |
use_linear_in_transformer=unet.use_linear_in_transformer, | |
adm_in_channels=unet.adm_in_channels, | |
disable_temporal_crossattention=unet.disable_temporal_crossattention, | |
max_ddpm_temb_period=unet.max_ddpm_temb_period, # up to here unet params | |
merging_mode=merging_mode, | |
zero_conv_mode=zero_conv_mode, | |
frame_expansion=frame_expansion, | |
downsample_controlnet_cond=downsample_controlnet_cond, | |
use_image_encoder_normalization=use_image_encoder_normalization, | |
use_controlnet_mask=use_controlnet_mask, | |
condition_encoder=condition_encoder, | |
conditioning_embedding_out_channels=conditioning_embedding_out_channels, | |
) | |
controlnet: ControlNet | |
return controlnet | |
def zero_module(module, reset=True): | |
if reset: | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |