Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from models.svd.sgm.modules.diffusionmodules.discretizer import Discretization | |
# Implementation of https://arxiv.org/abs/2404.14507 | |
class AlignYourSteps(Discretization): | |
def __init__(self, sigma_min=0.002, sigma_max=80.0, rho=7.0): | |
self.sigma_min = sigma_min | |
self.sigma_max = sigma_max | |
self.rho = rho | |
def loglinear_interp(self, t_steps, num_steps): | |
""" | |
Performs log-linear interpolation of a given array of decreasing numbers. | |
""" | |
xs = np.linspace(0, 1, len(t_steps)) | |
ys = np.log(t_steps[::-1]) | |
new_xs = np.linspace(0, 1, num_steps) | |
new_ys = np.interp(new_xs, xs, ys) | |
interped_ys = np.exp(new_ys)[::-1].copy() | |
return interped_ys | |
def get_sigmas(self, n, device="cpu"): | |
sampling_schedule = [700.00, 54.5, 15.886, 7.977, | |
4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002] | |
sigmas = torch.from_numpy(self.loglinear_interp( | |
sampling_schedule, n)).to(device) | |
return sigmas | |