Spaces:
Runtime error
Runtime error
File size: 13,749 Bytes
d54dcc8 42ef8b6 d54dcc8 1e91478 d54dcc8 0aa7102 d54dcc8 de5d4b1 d54dcc8 0aa7102 d54dcc8 de5d4b1 d54dcc8 6d0ac1c acd3439 d54dcc8 0aa7102 d54dcc8 acd3439 d54dcc8 acd3439 d54dcc8 c6e7168 d54dcc8 7a2beef d54dcc8 0aa7102 d54dcc8 0d26b1d 9ef5340 dca04a7 0d26b1d 9ef5340 8996779 0d26b1d c65d4d6 0d26b1d 9ef5340 8996779 0d26b1d d54dcc8 18b7cae d54dcc8 86735c0 d54dcc8 18b7cae d54dcc8 42ef8b6 d54dcc8 0d26b1d 42ef8b6 0d26b1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import zipfile
import gradio as gr
import nltk
import pandas as pd
import requests
from pyabsa import TADCheckpointManager
from textattack.attack_recipes import (
BAEGarg2019,
PWWSRen2019,
TextFoolerJin2019,
PSOZang2020,
IGAWang2019,
GeneticAlgorithmAlzantot2018,
DeepWordBugGao2018,
CLARE2020,
)
from textattack.attack_results import SuccessfulAttackResult
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts
# from utils import get_yahoo_example
sent_attackers = {}
tad_classifiers = {}
attack_recipes = {
"bae": BAEGarg2019,
"pwws": PWWSRen2019,
"textfooler": TextFoolerJin2019,
"pso": PSOZang2020,
"iga": IGAWang2019,
"ga": GeneticAlgorithmAlzantot2018,
"deepwordbug": DeepWordBugGao2018,
"clare": CLARE2020,
}
def init():
nltk.download("omw-1.4")
if not os.path.exists("TAD-SST2"):
z = zipfile.ZipFile("checkpoints.zip", "r")
z.extractall(os.getcwd())
for attacker in ["pwws", "bae", "textfooler", "deepwordbug"]:
for dataset in [
"agnews10k",
"sst2",
"MR",
'imdb'
]:
if "tad-{}".format(dataset) not in tad_classifiers:
tad_classifiers[
"tad-{}".format(dataset)
] = TADCheckpointManager.get_tad_text_classifier(
"tad-{}".format(dataset).upper()
)
sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
)
tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
"tad-{}pwws".format(dataset)
]
cache = set()
def generate_adversarial_example(dataset, attacker, text=None, label=None):
"""if not text or text in cache:
if "agnews" in dataset.lower():
text, label = get_agnews_example()
elif "sst2" in dataset.lower():
text, label = get_sst2_example()
elif "MR" in dataset.lower():
text, label = get_amazon_example()
# elif "yahoo" in dataset.lower():
# text, label = get_yahoo_example()
elif "imdb" in dataset.lower():
text, label = get_imdb_example()"""
cache.add(text)
result = None
attack_result = sent_attackers[
"tad-{}{}".format(dataset.lower(), attacker.lower())
].attacker.simple_attack(text, int(label))
if isinstance(attack_result, SuccessfulAttackResult):
if (
attack_result.perturbed_result.output
!= attack_result.original_result.ground_truth_output
) and (
attack_result.original_result.output
== attack_result.original_result.ground_truth_output
):
# with defense
result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
attack_result.perturbed_result.attacked_text.text
+ "$LABEL${},{},{}".format(
attack_result.original_result.ground_truth_output,
1,
attack_result.perturbed_result.output,
),
print_result=True,
defense=attacker,
)
if result:
classification_df = {}
classification_df["is_repaired"] = result["is_fixed"]
classification_df["pred_label"] = result["label"]
classification_df["confidence"] = round(result["confidence"], 3)
classification_df["is_correct"] = str(result["pred_label"]) == str(label)
advdetection_df = {}
if result["is_adv_label"] != "0":
advdetection_df["is_adversarial"] = {
"0": False,
"1": True,
0: False,
1: True,
}[result["is_adv_label"]]
advdetection_df["perturbed_label"] = result["perturbed_label"]
advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
advdetection_df['is_correct'] = result['ref_is_adv_check']
else:
return generate_adversarial_example(dataset, attacker)
return (
text,
label,
result["restored_text"],
result["label"],
attack_result.perturbed_result.attacked_text.text,
diff_texts(text, text),
diff_texts(text, attack_result.perturbed_result.attacked_text.text),
diff_texts(text, result["restored_text"]),
attack_result.perturbed_result.output,
pd.DataFrame(classification_df, index=[0]),
pd.DataFrame(advdetection_df, index=[0]),
)
def run_demo(dataset, attacker, text=None, label=None):
try:
data = {
"dataset": dataset,
"attacker": attacker,
"text": text,
"label": label,
}
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', json=data)
result = response.json()
print(response.json())
return (
result["text"],
result["label"],
result["restored_text"],
result["result_label"],
result["perturbed_text"],
result["text_diff"],
result["perturbed_diff"],
result["restored_diff"],
result["output"],
pd.DataFrame(result["classification_df"]),
pd.DataFrame(result["advdetection_df"]),
result["message"]
)
except Exception as e:
print(e)
return generate_adversarial_example(dataset, attacker, text, label)
def check_gpu():
try:
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', timeout=3)
if response.status_code < 500:
return 'GPU available'
else:
return 'GPU not available'
except Exception as e:
return 'GPU not available'
if __name__ == "__main__":
try:
init()
except Exception as e:
print(e)
print("Failed to initialize the demo. Please try again later.")
demo = gr.Blocks()
with demo:
gr.Markdown("<h1 align='center'>Detection and Correction based on Word Importance Ranking (DCWIR) </h1>")
gr.Markdown("<h2 align='center'>Clarifications</h2>")
gr.Markdown("""
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by Rapid. The repair success rate is actually the performance reported in the paper.The user must know the resulted output for sake of demonstration.
- The adversarial example and corrected adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations.
- All the proposed attacks are Black Box attack where the attacker has no access to the model parameters.
""")
gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
with gr.Group():
with gr.Row():
input_dataset = gr.Radio(
choices=["SST2", "IMDB", "MR", "AGNews10K"],
value="SST2",
label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
)
input_attacker = gr.Radio(
choices=["BAE", "PWWS", "TextFooler", "DeepWordBug"],
value="TextFooler",
label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
)
with gr.Group(visible=True):
with gr.Row():
input_sentence = gr.Textbox(
placeholder="Input a natural example...",
label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",
)
input_label = gr.Textbox(
placeholder="Original label, (must be a integer, because we use digits to represent labels in training)",
label="Original Label",
)
gr.Markdown(
"<h3 align='center'>Default parameters are set according to the main experiment setup in the report.</h2>",
)
with gr.Row():
wir_percentage = gr.Textbox(
placeholder="Enter percentage from WIR...",
label="Percentage from WIR",
)
frequency_threshold = gr.Textbox(
placeholder="Enter frequency threshold...",
label="Frequency Threshold",
)
max_candidates = gr.Textbox(
placeholder="Enter maximum number of candidates...",
label="Maximum Number of Candidates",
)
msg_text = gr.Textbox(
label="Message",
placeholder="This is a message box to show any error messages.",
)
button_gen = gr.Button(
"Generate an adversarial example to repair using Rapid (GPU: < 1 minute, CPU: 1-10 minutes)",
variant="primary",
)
gpu_status_text = gr.Textbox(
label='GPU status',
placeholder="Please click to check",
)
button_check = gr.Button(
"Check if GPU available",
variant="primary"
)
button_check.click(
fn=check_gpu,
inputs=[],
outputs=[
gpu_status_text
]
)
gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")
with gr.Column():
with gr.Group():
with gr.Row():
output_original_example = gr.Textbox(label="Original Example")
output_original_label = gr.Textbox(label="Original Label")
with gr.Row():
output_adv_example = gr.Textbox(label="Adversarial Example")
output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
with gr.Row():
output_repaired_example = gr.Textbox(
label="Repaired Adversarial Example by Rapid"
)
output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")
gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
gr.Markdown("""
<p align='center'>The (+) and (-) in the boxes indicate the added and deleted characters in the adversarial example compared to the original input natural example.</p>
""")
ori_text_diff = gr.HighlightedText(
label="The Original Natural Example",
combine_adjacent=True,
show_legend=True,
)
adv_text_diff = gr.HighlightedText(
label="Character Editions of Adversarial Example Compared to the Natural Example",
combine_adjacent=True,
show_legend=True,
)
restored_text_diff = gr.HighlightedText(
label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
combine_adjacent=True,
show_legend=True,
)
gr.Markdown(
"## <h2 align='center'>The Output of Reactive Perturbation Defocusing</p>"
)
with gr.Row():
with gr.Column():
with gr.Group():
output_is_adv_df = gr.DataFrame(
label="Adversarial Example Detection Result"
)
gr.Markdown(
"""
- The is_adversarial field indicates if an adversarial example is detected.
- The perturbed_label is the predicted label of the adversarial example.
- The confidence field represents the ratio of Inverted samples among the total number of generated candidates.
"""
)
with gr.Column():
with gr.Group():
output_df = gr.DataFrame(
label="Correction Classification Result"
)
gr.Markdown(
"""
- If is_corrected=true, it has been Corrected by DCWIR.
- The pred_label field indicates the standard classification result.
- The confidence field represents ratio of the dominant class among all Inverted candidates.
- The is_correct field indicates whether the predicted label is correct.
"""
)
# Bind functions to buttons
button_gen.click(
fn=run_demo,
inputs=[input_dataset, input_attacker, input_sentence, input_label],
outputs=[
output_original_example,
output_original_label,
output_repaired_example,
output_repaired_label,
output_adv_example,
ori_text_diff,
adv_text_diff,
restored_text_diff,
output_adv_label,
output_df,
output_is_adv_df,
msg_text
],
)
demo.queue(2).launch() |