Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,454 Bytes
dc780c5 837713d d842ce0 a07119c 837713d d842ce0 837713d 03d612a d842ce0 837713d d842ce0 837713d c36a256 837713d 2b1d793 837713d 85185da d842ce0 837713d a1cb9c1 d842ce0 a1cb9c1 d842ce0 a1cb9c1 837713d d842ce0 a07119c d842ce0 03d612a 44bb8b9 03d612a 44bb8b9 d842ce0 44bb8b9 d842ce0 44bb8b9 d842ce0 44bb8b9 03d612a d842ce0 03d612a d842ce0 44bb8b9 03d612a d842ce0 03d612a 44bb8b9 d842ce0 a07119c 8d5a618 d842ce0 c36a256 837713d 276c4d0 d842ce0 276c4d0 837713d d842ce0 837713d 03d612a 837713d d842ce0 837713d dc780c5 d842ce0 dc780c5 9ab236a dc780c5 d842ce0 85185da d842ce0 dc780c5 d842ce0 837713d d842ce0 837713d d842ce0 837713d 50a7cb9 d842ce0 cf93985 d842ce0 cf93985 d842ce0 88dfd37 837713d a07119c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# SmolLM Instruct setup
checkpoint = "HuggingFaceTB/SmolLM-360M-Instruct"
smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
# Original model setup
repo_id = "ylacombe/p-m-e"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres."
default_description = "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone."
examples = [
[
"La voix humaine est un instrument de musique au-dessus de tous les autres.",
"a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone.",
True,
None,
],
[
"The human voice is nature's most perfect instrument.",
"A woman with a slightly low-pitched voice speaks slowly in a very distant-sounding environment with a clean audio quality, delivering her message in a very monotone manner.",
True,
None,
],
]
number_normalizer = EnglishNumberNormalizer()
def format_description(raw_description, do_format=True):
if not do_format:
return raw_description
messages = [{
"role": "system",
"content": "You are a helpful assistant that formats voice descriptions precisely according to the template provided."
}, {
"role": "user",
"content": f"""Format this voice description exactly as:
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]"
Required format:
- gender: man/woman
- pitch: slightly low-pitched/moderate pitch/high-pitched
- speed: slowly/moderately/quickly
- environment: close-sounding and clear/distant-sounding and noisy
- delivery style: with monotone delivery/with animated delivery
Input description: {raw_description}
Return only the formatted description, nothing else."""
}]
input_text = smol_tokenizer.apply_chat_template(messages, tokenize=False)
inputs = smol_tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = smol_model.generate(
inputs,
max_new_tokens=100,
temperature=0.2,
top_p=0.9,
do_sample=True
)
formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the formatted description
if "a woman" in formatted.lower() or "a man" in formatted.lower():
return formatted.strip()
return raw_description
def preprocess(text):
text = number_normalizer(text).strip()
text = text.replace("-", " ")
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".","")
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
@spaces.GPU
def gen_tts(text, description, do_format=True):
formatted_desc = format_description(description, do_format)
inputs = description_tokenizer(formatted_desc.strip(), return_tensors="pt").to(device)
prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
attention_mask=inputs.attention_mask,
prompt_attention_mask=prompt.attention_mask,
do_sample=True,
temperature=1.0
)
audio_arr = generation.cpu().numpy().squeeze()
return formatted_desc, (SAMPLE_RATE, audio_arr)
# Rest of the code remains unchanged
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;">
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Multi Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
"""<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models.</p>
<p>This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p>
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
lines=2,
value=default_text
)
raw_description = gr.Textbox(
label="Voice Description",
lines=2,
value=default_description
)
do_format = gr.Checkbox(
label="Reformat description using SmolLM",
value=True
)
formatted_description = gr.Textbox(
label="Used Description",
lines=2
)
generate_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy")
generate_button.click(
fn=gen_tts,
inputs=[input_text, raw_description, do_format],
outputs=[formatted_description, audio_out]
)
gr.Examples(
examples=examples,
fn=gen_tts,
inputs=[input_text, raw_description, do_format],
outputs=[formatted_description, audio_out],
cache_examples=True
)
gr.HTML(
"""<p>Tips for ensuring good generation:
<ul>
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>Punctuation can be used to control the prosody of the generations</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>"""
)
block.queue()
block.launch(share=True) |