Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,045 Bytes
dc780c5 837713d a07119c 837713d fc14b63 837713d c36a256 837713d 2b1d793 837713d 85185da e80acc5 837713d a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 e80acc5 a1cb9c1 837713d a07119c 8d5a618 276c4d0 c36a256 837713d 276c4d0 837713d dc780c5 837713d dc780c5 9ab236a dc780c5 a1cb9c1 85185da a1cb9c1 85185da a1cb9c1 dc780c5 837713d cf93985 837713d 364343c 837713d cf93985 50a7cb9 cf93985 85185da 88dfd37 837713d cf93985 837713d a07119c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import spaces
import gradio as gr
import torch
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
device = "cuda:0" if torch.cuda.is_available() else "cpu"
repo_id = "ylacombe/p-m-e"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
text_tokenizer = AutoTokenizer.from_pretrained(repo_id)
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres."
default_description = "a woman with a slightly low- pitched voice speaks slowly in a clear and close- sounding environment, but her delivery is quite monotone."
examples = [
# French
[
"La voix humaine est un instrument de musique au-dessus de tous les autres.",
"a woman with a slightly low- pitched voice speaks slowly in a clear and close- sounding environment, but her delivery is quite monotone.",
None,
],
# Spanish
[
"La voz es el reflejo del alma en el espejo del tiempo.",
"a man with a moderate pitch voice speaks slowly with a slightly animated delivery in a very close- sounding environment with minimal background noise.",
None,
],
# Italian
[
"La voce umana è la più bella musica che esista al mondo.",
"a man with a moderate pitch speaks slowly in a very noisy environment that sounds very distant, delivering his words in a monotone manner.",
None,
],
# Portuguese
[
"A voz é o espelho da alma e o som do coração.",
"a man speaks slowly in a distant- sounding environment with a clean audio quality, delivering his message in a monotone voice at a moderate pitch. ",
None,
],
# Polish
[
"Głos ludzki jest najpiękniejszym instrumentem świata.",
"a man with a moderate pitch speaks in a monotone manner at a slightly slow pace, but the recording is quite noisy and sounds very distant.",
None,
],
# German
[
"Die menschliche Stimme ist das schönste Instrument der Welt.",
"a man with a moderate pitch speaks slowly in a noisy environment with a flat tone of voice, creating a slightly close- sounding effect.",
None,
],
# Dutch
[
"De menselijke stem is het mooiste instrument dat er bestaat.",
"a man with a moderate pitch speaks slightly slowly with an expressive and animated delivery in a very close- sounding environment with a bit of background noise.",
None,
],
# English
[
"The human voice is nature's most perfect instrument.",
"Aa woman with a slightly low- pitched voice speaks slowly in a very distant- sounding environment with a clean audio quality, delivering her message in a very monotone manner.",
None,
],
]
number_normalizer = EnglishNumberNormalizer()
def preprocess(text):
text = number_normalizer(text).strip()
text = text.replace("-", " ")
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".","")
print(chunk)
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
@spaces.GPU
def gen_tts(text, description):
inputs = description_tokenizer(description.strip(), return_tensors="pt").to(device)
prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(
input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0
)
audio_arr = generation.cpu().numpy().squeeze()
return SAMPLE_RATE, audio_arr
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Multi Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models.</p>
<p>This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation). </p>
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>
<p><b>Note:</b> you do not need to specify the nationality of the speaker in the description (do: "a male speaker", don't: "a french male speaker") </p>
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
inputs = [input_text, description]
outputs = [audio_out]
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
gr.HTML(
"""
<p>Tips for ensuring good generation:
<ul>
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>
"""
)
block.queue()
block.launch(share=True) |