import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer from string import punctuation import re from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed # Device setup device = "cuda:0" if torch.cuda.is_available() else "cpu" # SmolLM setup checkpoint = "HuggingFaceTB/SmolLM-360M" smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint) smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) # Original model setup repo_id = "ylacombe/p-m-e" model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) text_tokenizer = AutoTokenizer.from_pretrained(repo_id) description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." default_description = "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone." examples = [ [ "La voix humaine est un instrument de musique au-dessus de tous les autres.", "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone.", True, None, ], [ "The human voice is nature's most perfect instrument.", "A woman with a slightly low-pitched voice speaks slowly in a very distant-sounding environment with a clean audio quality, delivering her message in a very monotone manner.", True, None, ], ] number_normalizer = EnglishNumberNormalizer() def format_description(raw_description, do_format=True): if not do_format: return raw_description prompt = f"""Format this voice description to match exactly: "a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]" Where: - gender: man/woman - pitch: slightly low-pitched/moderate pitch/high-pitched - speed: slowly/moderately/quickly - environment: close-sounding and clear/distant-sounding and noisy - delivery style: with monotone delivery/with animated delivery Description to format: {raw_description} Formatted description:""" inputs = smol_tokenizer.encode(prompt, return_tensors="pt").to(device) outputs = smol_model.generate( inputs, max_length=200, num_return_sequences=1, temperature=0.7, do_sample=True, pad_token_id=smol_tokenizer.eos_token_id ) formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True) return formatted.split("Formatted description:")[-1].strip() def preprocess(text): text = number_normalizer(text).strip() text = text.replace("-", " ") if text[-1] not in punctuation: text = f"{text}." abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' def separate_abb(chunk): chunk = chunk.replace(".","") return " ".join(chunk) abbreviations = re.findall(abbreviations_pattern, text) for abv in abbreviations: if abv in text: text = text.replace(abv, separate_abb(abv)) return text @spaces.GPU def gen_tts(text, description, do_format=True): formatted_desc = format_description(description, do_format) inputs = description_tokenizer(formatted_desc.strip(), return_tensors="pt").to(device) prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device) set_seed(SEED) generation = model.generate( input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0 ) audio_arr = generation.cpu().numpy().squeeze() return formatted_desc, (SAMPLE_RATE, audio_arr) css = """ #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; flex: unset !important; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor: pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; right:0; } #share-btn * { all: unset !important; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } """ with gr.Blocks(css=css) as block: gr.HTML( """
Parler-TTS is a training and inference library for high-fidelity text-to-speech (TTS) models.
This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.
By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 speaker consistency across generations, try to use consistent descriptions in your prompts.
""" ) with gr.Row(): with gr.Column(): input_text = gr.Textbox( label="Input Text", lines=2, value=default_text ) raw_description = gr.Textbox( label="Voice Description", lines=2, value=default_description ) do_format = gr.Checkbox( label="Reformat description using SmolLM", value=True ) formatted_description = gr.Textbox( label="Used Description", lines=2 ) generate_button = gr.Button("Generate Audio", variant="primary") with gr.Column(): audio_out = gr.Audio(label="Parler-TTS generation", type="numpy") generate_button.click( fn=gen_tts, inputs=[input_text, raw_description, do_format], outputs=[formatted_description, audio_out] ) gr.Examples( examples=examples, fn=gen_tts, inputs=[input_text, raw_description, do_format], outputs=[formatted_description, audio_out], cache_examples=True ) gr.HTML( """Tips for ensuring good generation: