File size: 7,109 Bytes
331b555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import torch.nn as nn
import math
from yolov6.layers.common import *


class Detect(nn.Module):
    '''Efficient Decoupled Head
    With hardware-aware degisn, the decoupled head is optimized with
    hybridchannels methods.
    '''
    def __init__(self, num_classes=80, anchors=1, num_layers=3, inplace=True, head_layers=None):  # detection layer
        super().__init__()
        assert head_layers is not None
        self.nc = num_classes  # number of classes
        self.no = num_classes + 5  # number of outputs per anchor
        self.nl = num_layers  # number of detection layers
        if isinstance(anchors, (list, tuple)):
            self.na = len(anchors[0]) // 2
        else:
            self.na = anchors
        self.anchors = anchors
        self.grid = [torch.zeros(1)] * num_layers
        self.prior_prob = 1e-2
        self.inplace = inplace
        stride = [8, 16, 32]  # strides computed during build
        self.stride = torch.tensor(stride)

        # Init decouple head
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        self.cls_preds = nn.ModuleList()
        self.reg_preds = nn.ModuleList()
        self.obj_preds = nn.ModuleList()
        self.stems = nn.ModuleList()

        # Efficient decoupled head layers
        for i in range(num_layers):
            idx = i*6
            self.stems.append(head_layers[idx])
            self.cls_convs.append(head_layers[idx+1])
            self.reg_convs.append(head_layers[idx+2])
            self.cls_preds.append(head_layers[idx+3])
            self.reg_preds.append(head_layers[idx+4])
            self.obj_preds.append(head_layers[idx+5])

    def initialize_biases(self):
        for conv in self.cls_preds:
            b = conv.bias.view(self.na, -1)
            b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
            conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
        for conv in self.obj_preds:
            b = conv.bias.view(self.na, -1)
            b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
            conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def forward(self, x):
        z = []
        for i in range(self.nl):
            x[i] = self.stems[i](x[i])
            cls_x = x[i]
            reg_x = x[i]
            cls_feat = self.cls_convs[i](cls_x)
            cls_output = self.cls_preds[i](cls_feat)
            reg_feat = self.reg_convs[i](reg_x)
            reg_output = self.reg_preds[i](reg_feat)
            obj_output = self.obj_preds[i](reg_feat)
            if self.training:
                x[i] = torch.cat([reg_output, obj_output, cls_output], 1)
                bs, _, ny, nx = x[i].shape
                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            else:
                y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
                bs, _, ny, nx = y.shape
                y = y.view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
                if self.grid[i].shape[2:4] != y.shape[2:4]:
                    d = self.stride.device
                    yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
                    self.grid[i] = torch.stack((xv, yv), 2).view(1, self.na, ny, nx, 2).float()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = torch.exp(y[..., 2:4]) * self.stride[i] # wh
                else:
                    xy = (y[..., 0:2] + self.grid[i]) * self.stride[i]  # xy
                    wh = torch.exp(y[..., 2:4]) * self.stride[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))
        return x if self.training else torch.cat(z, 1)


def build_effidehead_layer(channels_list, num_anchors, num_classes):
    head_layers = nn.Sequential(
        # stem0
        Conv(
            in_channels=channels_list[6],
            out_channels=channels_list[6],
            kernel_size=1,
            stride=1
        ),
        # cls_conv0
        Conv(
            in_channels=channels_list[6],
            out_channels=channels_list[6],
            kernel_size=3,
            stride=1
        ),
        # reg_conv0
        Conv(
            in_channels=channels_list[6],
            out_channels=channels_list[6],
            kernel_size=3,
            stride=1
        ),
        # cls_pred0
        nn.Conv2d(
            in_channels=channels_list[6],
            out_channels=num_classes * num_anchors,
            kernel_size=1
        ),
        # reg_pred0
        nn.Conv2d(
            in_channels=channels_list[6],
            out_channels=4 * num_anchors,
            kernel_size=1
        ),
        # obj_pred0
        nn.Conv2d(
            in_channels=channels_list[6],
            out_channels=1 * num_anchors,
            kernel_size=1
        ),
        # stem1
        Conv(
            in_channels=channels_list[8],
            out_channels=channels_list[8],
            kernel_size=1,
            stride=1
        ),
        # cls_conv1
        Conv(
            in_channels=channels_list[8],
            out_channels=channels_list[8],
            kernel_size=3,
            stride=1
        ),
        # reg_conv1
        Conv(
            in_channels=channels_list[8],
            out_channels=channels_list[8],
            kernel_size=3,
            stride=1
        ),
        # cls_pred1
        nn.Conv2d(
            in_channels=channels_list[8],
            out_channels=num_classes * num_anchors,
            kernel_size=1
        ),
        # reg_pred1
        nn.Conv2d(
            in_channels=channels_list[8],
            out_channels=4 * num_anchors,
            kernel_size=1
        ),
        # obj_pred1
        nn.Conv2d(
            in_channels=channels_list[8],
            out_channels=1 * num_anchors,
            kernel_size=1
        ),
        # stem2
        Conv(
            in_channels=channels_list[10],
            out_channels=channels_list[10],
            kernel_size=1,
            stride=1
        ),
        # cls_conv2
        Conv(
            in_channels=channels_list[10],
            out_channels=channels_list[10],
            kernel_size=3,
            stride=1
        ),
        # reg_conv2
        Conv(
            in_channels=channels_list[10],
            out_channels=channels_list[10],
            kernel_size=3,
            stride=1
        ),
        # cls_pred2
        nn.Conv2d(
            in_channels=channels_list[10],
            out_channels=num_classes * num_anchors,
            kernel_size=1
        ),
        # reg_pred2
        nn.Conv2d(
            in_channels=channels_list[10],
            out_channels=4 * num_anchors,
            kernel_size=1
        ),
        # obj_pred2
        nn.Conv2d(
            in_channels=channels_list[10],
            out_channels=1 * num_anchors,
            kernel_size=1
        )
    )
    return head_layers