PKaushik's picture
commit
7dc2bfe
raw
history blame
4.88 kB
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# The code is based on
# https://github.com/ultralytics/yolov5/blob/master/utils/general.py
import os
import time
import numpy as np
import cv2
import torch
import torchvision
# Settings
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
def xywh2xyxy(x):
# Convert boxes with shape [n, 4] from [x, y, w, h] to [x1, y1, x2, y2] where x1y1 is top-left, x2y2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, max_det=300):
"""Runs Non-Maximum Suppression (NMS) on inference results.
This code is borrowed from: https://github.com/ultralytics/yolov5/blob/47233e1698b89fc437a4fb9463c815e9171be955/utils/general.py#L775
Args:
prediction: (tensor), with shape [N, 5 + num_classes], N is the number of bboxes.
conf_thres: (float) confidence threshold.
iou_thres: (float) iou threshold.
classes: (None or list[int]), if a list is provided, nms only keep the classes you provide.
agnostic: (bool), when it is set to True, we do class-independent nms, otherwise, different class would do nms respectively.
multi_label: (bool), when it is set to True, one box can have multi labels, otherwise, one box only huave one label.
max_det:(int), max number of output bboxes.
Returns:
list of detections, echo item is one tensor with shape (num_boxes, 6), 6 is for [xyxy, conf, cls].
"""
num_classes = prediction.shape[2] - 5 # number of classes
pred_candidates = prediction[..., 4] > conf_thres # candidates
# Check the parameters.
assert 0 <= conf_thres <= 1, f'conf_thresh must be in 0.0 to 1.0, however {conf_thres} is provided.'
assert 0 <= iou_thres <= 1, f'iou_thres must be in 0.0 to 1.0, however {iou_thres} is provided.'
# Function settings.
max_wh = 4096 # maximum box width and height
max_nms = 30000 # maximum number of boxes put into torchvision.ops.nms()
time_limit = 10.0 # quit the function when nms cost time exceed the limit time.
multi_label &= num_classes > 1 # multiple labels per box
tik = time.time()
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
for img_idx, x in enumerate(prediction): # image index, image inference
x = x[pred_candidates[img_idx]] # confidence
# If no box remains, skip the next process.
if not x.shape[0]:
continue
# confidence multiply the objectness
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix's shape is (n,6), each row represents (xyxy, conf, cls)
if multi_label:
box_idx, class_idx = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[box_idx], x[box_idx, class_idx + 5, None], class_idx[:, None].float()), 1)
else: # Only keep the class with highest scores.
conf, class_idx = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, class_idx.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class, only keep boxes whose category is in classes.
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Check shape
num_box = x.shape[0] # number of boxes
if not num_box: # no boxes kept.
continue
elif num_box > max_nms: # excess max boxes' number.
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
# Batched NMS
class_offset = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + class_offset, x[:, 4] # boxes (offset by class), scores
keep_box_idx = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
if keep_box_idx.shape[0] > max_det: # limit detections
keep_box_idx = keep_box_idx[:max_det]
output[img_idx] = x[keep_box_idx]
if (time.time() - tik) > time_limit:
print(f'WARNING: NMS cost time exceed the limited {time_limit}s.')
break # time limit exceeded
return output