PKaushik's picture
commit
e31779b
raw
history blame
10.9 kB
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
from tqdm import tqdm
import numpy as np
import json
import torch
import yaml
from pathlib import Path
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from yolov6.data.data_load import create_dataloader
from yolov6.utils.events import LOGGER, NCOLS
from yolov6.utils.nms import non_max_suppression
from yolov6.utils.checkpoint import load_checkpoint
from yolov6.utils.torch_utils import time_sync, get_model_info
'''
python tools/eval.py --task 'train'/'val'/'speed'
'''
class Evaler:
def __init__(self,
data,
batch_size=32,
img_size=640,
conf_thres=0.001,
iou_thres=0.65,
device='',
half=True,
save_dir=''):
self.data = data
self.batch_size = batch_size
self.img_size = img_size
self.conf_thres = conf_thres
self.iou_thres = iou_thres
self.device = device
self.half = half
self.save_dir = save_dir
def init_model(self, model, weights, task):
if task != 'train':
model = load_checkpoint(weights, map_location=self.device)
self.stride = int(model.stride.max())
if self.device.type != 'cpu':
model(torch.zeros(1, 3, self.img_size, self.img_size).to(self.device).type_as(next(model.parameters())))
# switch to deploy
from yolov6.layers.common import RepVGGBlock
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
LOGGER.info("Switch model to deploy modality.")
LOGGER.info("Model Summary: {}".format(get_model_info(model, self.img_size)))
model.half() if self.half else model.float()
return model
def init_data(self, dataloader, task):
'''Initialize dataloader.
Returns a dataloader for task val or speed.
'''
self.is_coco = self.data.get("is_coco", False)
self.ids = self.coco80_to_coco91_class() if self.is_coco else list(range(1000))
if task != 'train':
pad = 0.0 if task == 'speed' else 0.5
dataloader = create_dataloader(self.data[task if task in ('train', 'val', 'test') else 'val'],
self.img_size, self.batch_size, self.stride, check_labels=True, pad=pad, rect=True,
data_dict=self.data, task=task)[0]
return dataloader
def predict_model(self, model, dataloader, task):
'''Model prediction
Predicts the whole dataset and gets the prediced results and inference time.
'''
self.speed_result = torch.zeros(4, device=self.device)
pred_results = []
pbar = tqdm(dataloader, desc="Inferencing model in val datasets.", ncols=NCOLS)
for imgs, targets, paths, shapes in pbar:
# pre-process
t1 = time_sync()
imgs = imgs.to(self.device, non_blocking=True)
imgs = imgs.half() if self.half else imgs.float()
imgs /= 255
self.speed_result[1] += time_sync() - t1 # pre-process time
# Inference
t2 = time_sync()
outputs = model(imgs)
self.speed_result[2] += time_sync() - t2 # inference time
# post-process
t3 = time_sync()
outputs = non_max_suppression(outputs, self.conf_thres, self.iou_thres, multi_label=True)
self.speed_result[3] += time_sync() - t3 # post-process time
self.speed_result[0] += len(outputs)
# save result
pred_results.extend(self.convert_to_coco_format(outputs, imgs, paths, shapes, self.ids))
return pred_results
def eval_model(self, pred_results, model, dataloader, task):
'''Evaluate models
For task speed, this function only evaluates the speed of model and outputs inference time.
For task val, this function evaluates the speed and mAP by pycocotools, and returns
inference time and mAP value.
'''
LOGGER.info(f'\nEvaluating speed.')
self.eval_speed(task)
LOGGER.info(f'\nEvaluating mAP by pycocotools.')
if task != 'speed' and len(pred_results):
if 'anno_path' in self.data:
anno_json = self.data['anno_path']
else:
# generated coco format labels in dataset initialization
dataset_root = os.path.dirname(os.path.dirname(self.data['val']))
base_name = os.path.basename(self.data['val'])
anno_json = os.path.join(dataset_root, 'annotations', f'instances_{base_name}.json')
pred_json = os.path.join(self.save_dir, "predictions.json")
LOGGER.info(f'Saving {pred_json}...')
with open(pred_json, 'w') as f:
json.dump(pred_results, f)
anno = COCO(anno_json)
pred = anno.loadRes(pred_json)
cocoEval = COCOeval(anno, pred, 'bbox')
if self.is_coco:
imgIds = [int(os.path.basename(x).split(".")[0])
for x in dataloader.dataset.img_paths]
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
# Return results
model.float() # for training
if task != 'train':
LOGGER.info(f"Results saved to {self.save_dir}")
return (map50, map)
return (0.0, 0.0)
def eval_speed(self, task):
'''Evaluate model inference speed.'''
if task != 'train':
n_samples = self.speed_result[0].item()
pre_time, inf_time, nms_time = 1000 * self.speed_result[1:].cpu().numpy() / n_samples
for n, v in zip(["pre-process", "inference", "NMS"],[pre_time, inf_time, nms_time]):
LOGGER.info("Average {} time: {:.2f} ms".format(n, v))
def box_convert(self, x):
# Convert boxes with shape [n, 4] from [x1, y1, x2, y2] to [x, y, w, h] where x1y1=top-left, x2y2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
if isinstance(coords, torch.Tensor): # faster individually
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
else: # np.array (faster grouped)
coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
return coords
def convert_to_coco_format(self, outputs, imgs, paths, shapes, ids):
pred_results = []
for i, pred in enumerate(outputs):
if len(pred) == 0:
continue
path, shape = Path(paths[i]), shapes[i][0]
self.scale_coords(imgs[i].shape[1:], pred[:, :4], shape, shapes[i][1])
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
bboxes = self.box_convert(pred[:, 0:4])
bboxes[:, :2] -= bboxes[:, 2:] / 2
cls = pred[:, 5]
scores = pred[:, 4]
for ind in range(pred.shape[0]):
category_id = ids[int(cls[ind])]
bbox = [round(x, 3) for x in bboxes[ind].tolist()]
score = round(scores[ind].item(), 5)
pred_data = {
"image_id": image_id,
"category_id": category_id,
"bbox": bbox,
"score": score
}
pred_results.append(pred_data)
return pred_results
@staticmethod
def check_task(task):
if task not in ['train', 'val', 'speed']:
raise Exception("task argument error: only support 'train' / 'val' / 'speed' task.")
@staticmethod
def reload_thres(conf_thres, iou_thres, task):
'''Sets conf and iou threshold for task val/speed'''
if task != 'train':
if task == 'val':
conf_thres = 0.001
if task == 'speed':
conf_thres = 0.25
iou_thres = 0.45
return conf_thres, iou_thres
@staticmethod
def reload_device(device, model, task):
# device = 'cpu' or '0' or '0,1,2,3'
if task == 'train':
device = next(model.parameters()).device
else:
if device == 'cpu':
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
elif device:
os.environ['CUDA_VISIBLE_DEVICES'] = device
assert torch.cuda.is_available()
cuda = device != 'cpu' and torch.cuda.is_available()
device = torch.device('cuda:0' if cuda else 'cpu')
return device
@staticmethod
def reload_dataset(data):
with open(data, errors='ignore') as yaml_file:
data = yaml.safe_load(yaml_file)
val = data.get('val')
if not os.path.exists(val):
raise Exception('Dataset not found.')
return data
@staticmethod
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x