humandetect / yolov6 /utils /checkpoint.py
PKaushik's picture
commit
4ee00b7
raw
history blame
2.21 kB
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import os
import shutil
import torch
import os.path as osp
from yolov6.utils.events import LOGGER
from yolov6.utils.torch_utils import fuse_model
def load_state_dict(weights, model, map_location=None):
"""Load weights from checkpoint file, only assign weights those layers' name and shape are match."""
ckpt = torch.load(weights, map_location=map_location)
state_dict = ckpt['model'].float().state_dict()
model_state_dict = model.state_dict()
state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict and v.shape == model_state_dict[k].shape}
model.load_state_dict(state_dict, strict=False)
del ckpt, state_dict, model_state_dict
return model
def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
"""Load model from checkpoint file."""
LOGGER.info("Loading checkpoint from {}".format(weights))
ckpt = torch.load(weights, map_location=map_location) # load
model = ckpt['ema' if ckpt.get('ema') else 'model'].float()
if fuse:
LOGGER.info("\nFusing model...")
model = fuse_model(model).eval()
else:
model = model.eval()
return model
def save_checkpoint(ckpt, is_best, save_dir, model_name=""):
""" Save checkpoint to the disk."""
if not osp.exists(save_dir):
os.makedirs(save_dir)
filename = osp.join(save_dir, model_name + '.pt')
torch.save(ckpt, filename)
if is_best:
best_filename = osp.join(save_dir, 'best_ckpt.pt')
shutil.copyfile(filename, best_filename)
def strip_optimizer(ckpt_dir, epoch):
for s in ['best', 'last']:
ckpt_path = osp.join(ckpt_dir, '{}_ckpt.pt'.format(s))
if not osp.exists(ckpt_path):
continue
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
if ckpt.get('ema'):
ckpt['model'] = ckpt['ema'] # replace model with ema
for k in ['optimizer', 'ema', 'updates']: # keys
ckpt[k] = None
ckpt['epoch'] = epoch
ckpt['model'].half() # to FP16
for p in ckpt['model'].parameters():
p.requires_grad = False
torch.save(ckpt, ckpt_path)