Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
import math | |
import torch.nn as nn | |
from yolov6.layers.common import * | |
from yolov6.utils.torch_utils import initialize_weights | |
from yolov6.models.efficientrep import EfficientRep | |
from yolov6.models.reppan import RepPANNeck | |
from yolov6.models.effidehead import Detect, build_effidehead_layer | |
class Model(nn.Module): | |
'''YOLOv6 model with backbone, neck and head. | |
The default parts are EfficientRep Backbone, Rep-PAN and | |
Efficient Decoupled Head. | |
''' | |
def __init__(self, config, channels=3, num_classes=None, anchors=None): # model, input channels, number of classes | |
super().__init__() | |
# Build network | |
num_layers = config.model.head.num_layers | |
self.backbone, self.neck, self.detect = build_network(config, channels, num_classes, anchors, num_layers) | |
# Init Detect head | |
begin_indices = config.model.head.begin_indices | |
out_indices_head = config.model.head.out_indices | |
self.stride = self.detect.stride | |
self.detect.i = begin_indices | |
self.detect.f = out_indices_head | |
self.detect.initialize_biases() | |
# Init weights | |
initialize_weights(self) | |
def forward(self, x): | |
x = self.backbone(x) | |
x = self.neck(x) | |
x = self.detect(x) | |
return x | |
def _apply(self, fn): | |
self = super()._apply(fn) | |
self.detect.stride = fn(self.detect.stride) | |
self.detect.grid = list(map(fn, self.detect.grid)) | |
return self | |
def make_divisible(x, divisor): | |
# Upward revision the value x to make it evenly divisible by the divisor. | |
return math.ceil(x / divisor) * divisor | |
def build_network(config, channels, num_classes, anchors, num_layers): | |
depth_mul = config.model.depth_multiple | |
width_mul = config.model.width_multiple | |
num_repeat_backbone = config.model.backbone.num_repeats | |
channels_list_backbone = config.model.backbone.out_channels | |
num_repeat_neck = config.model.neck.num_repeats | |
channels_list_neck = config.model.neck.out_channels | |
num_anchors = config.model.head.anchors | |
num_repeat = [(max(round(i * depth_mul), 1) if i > 1 else i) for i in (num_repeat_backbone + num_repeat_neck)] | |
channels_list = [make_divisible(i * width_mul, 8) for i in (channels_list_backbone + channels_list_neck)] | |
backbone = EfficientRep( | |
in_channels=channels, | |
channels_list=channels_list, | |
num_repeats=num_repeat | |
) | |
neck = RepPANNeck( | |
channels_list=channels_list, | |
num_repeats=num_repeat | |
) | |
head_layers = build_effidehead_layer(channels_list, num_anchors, num_classes) | |
head = Detect(num_classes, anchors, num_layers, head_layers=head_layers) | |
return backbone, neck, head | |
def build_model(cfg, num_classes, device): | |
model = Model(cfg, channels=3, num_classes=num_classes, anchors=cfg.model.head.anchors).to(device) | |
return model | |