Spaces:
Build error
Build error
commit
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import tempfile
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from inferer import Inferer
|
10 |
+
|
11 |
+
pipeline = Inferer("human", device='cuda')
|
12 |
+
print(f"GPU on? {'π’' if pipeline.device.type != 'cpu' else 'π΄'}")
|
13 |
+
|
14 |
+
def fn_image(image, conf_thres, iou_thres):
|
15 |
+
return pipeline(image, conf_thres, iou_thres)
|
16 |
+
|
17 |
+
|
18 |
+
def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
|
19 |
+
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
20 |
+
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
21 |
+
|
22 |
+
suffix = Path(video_file).suffix
|
23 |
+
|
24 |
+
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
25 |
+
subprocess.call(
|
26 |
+
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
27 |
+
)
|
28 |
+
|
29 |
+
# Reader of clip file
|
30 |
+
cap = cv2.VideoCapture(clip_temp_file.name)
|
31 |
+
|
32 |
+
# This is an intermediary temp file where we'll write the video to
|
33 |
+
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
34 |
+
# with ffmpeg at the end of the function here.
|
35 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
36 |
+
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 100, (1280, 720))
|
37 |
+
|
38 |
+
num_frames = 0
|
39 |
+
max_frames = duration * 100
|
40 |
+
while cap.isOpened():
|
41 |
+
try:
|
42 |
+
ret, frame = cap.read()
|
43 |
+
if not ret:
|
44 |
+
break
|
45 |
+
except Exception as e:
|
46 |
+
print(e)
|
47 |
+
continue
|
48 |
+
|
49 |
+
out.write(pipeline(frame, conf_thres, iou_thres))
|
50 |
+
num_frames += 1
|
51 |
+
print("Processed {} frames".format(num_frames))
|
52 |
+
if num_frames == max_frames:
|
53 |
+
break
|
54 |
+
|
55 |
+
out.release()
|
56 |
+
|
57 |
+
# Aforementioned hackiness
|
58 |
+
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
59 |
+
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
60 |
+
|
61 |
+
return out_file.name
|
62 |
+
|
63 |
+
|
64 |
+
image_interface = gr.Interface(
|
65 |
+
fn=fn_image,
|
66 |
+
inputs=[
|
67 |
+
"image",
|
68 |
+
gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
|
69 |
+
gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
|
70 |
+
],
|
71 |
+
outputs=gr.Image(type="file"),
|
72 |
+
examples=[["example_1.jpg", 0.5, 0.5], ["example_2.jpg", 0.25, 0.45], ["example_3.jpg", 0.25, 0.45]],
|
73 |
+
title="Human Detection",
|
74 |
+
description=(
|
75 |
+
"Gradio demo for Human detection on images. To use it, simply upload your image or click one of the"
|
76 |
+
" examples to load them. Read more at the links below."
|
77 |
+
),
|
78 |
+
allow_flagging=False,
|
79 |
+
allow_screenshot=False,
|
80 |
+
)
|
81 |
+
|
82 |
+
video_interface = gr.Interface(
|
83 |
+
fn=fn_video,
|
84 |
+
inputs=[
|
85 |
+
gr.Video(type="file"),
|
86 |
+
gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
|
87 |
+
gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
|
88 |
+
gr.Slider(0, 100, value=0, label="Start Second", step=1),
|
89 |
+
gr.Slider(0, 100 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1),
|
90 |
+
],
|
91 |
+
outputs=gr.Video(type="file", format="mp4"),
|
92 |
+
examples=[
|
93 |
+
["example_1.mp4", 0.25, 0.45, 0, 2],
|
94 |
+
["example_2.mp4", 0.25, 0.45, 5, 3],
|
95 |
+
["example_3.mp4", 0.25, 0.45, 6, 3],
|
96 |
+
],
|
97 |
+
title="Human Detection",
|
98 |
+
description=(
|
99 |
+
"Gradio demo for Human detection on videos. To use it, simply upload your video or click one of the"
|
100 |
+
" examples to load them. Read more at the links below."
|
101 |
+
),
|
102 |
+
allow_flagging=False,
|
103 |
+
allow_screenshot=False,
|
104 |
+
)
|
105 |
+
|
106 |
+
webcam_interface = gr.Interface(
|
107 |
+
fn_image,
|
108 |
+
inputs=[
|
109 |
+
gr.Image(source='webcam', streaming=True),
|
110 |
+
gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
|
111 |
+
gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
|
112 |
+
],
|
113 |
+
outputs=gr.Image(type="file"),
|
114 |
+
live=True,
|
115 |
+
title="Human Detection",
|
116 |
+
description=(
|
117 |
+
"Gradio demo for Human detection on real time webcam. To use it, simply allow the browser to access"
|
118 |
+
" your webcam. Read more at the links below."
|
119 |
+
),
|
120 |
+
allow_flagging=False,
|
121 |
+
allow_screenshot=False,
|
122 |
+
)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
gr.TabbedInterface(
|
126 |
+
[video_interface, image_interface, webcam_interface],
|
127 |
+
["Run on Videos!", "Run on Images!", "Run on Webcam!"],
|
128 |
+
).launch()
|