Spaces:
Build error
Build error
commit
Browse files- yolov6/core/engine.py +273 -0
yolov6/core/engine.py
CHANGED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from copy import deepcopy
|
6 |
+
import os.path as osp
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from torch.cuda import amp
|
13 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
+
from torch.utils.tensorboard import SummaryWriter
|
15 |
+
|
16 |
+
import tools.eval as eval
|
17 |
+
from yolov6.data.data_load import create_dataloader
|
18 |
+
from yolov6.models.yolo import build_model
|
19 |
+
from yolov6.models.loss import ComputeLoss
|
20 |
+
from yolov6.utils.events import LOGGER, NCOLS, load_yaml, write_tblog
|
21 |
+
from yolov6.utils.ema import ModelEMA, de_parallel
|
22 |
+
from yolov6.utils.checkpoint import load_state_dict, save_checkpoint, strip_optimizer
|
23 |
+
from yolov6.solver.build import build_optimizer, build_lr_scheduler
|
24 |
+
|
25 |
+
|
26 |
+
class Trainer:
|
27 |
+
def __init__(self, args, cfg, device):
|
28 |
+
self.args = args
|
29 |
+
self.cfg = cfg
|
30 |
+
self.device = device
|
31 |
+
|
32 |
+
if args.resume:
|
33 |
+
self.ckpt = torch.load(args.resume, map_location='cpu')
|
34 |
+
|
35 |
+
self.rank = args.rank
|
36 |
+
self.local_rank = args.local_rank
|
37 |
+
self.world_size = args.world_size
|
38 |
+
self.main_process = self.rank in [-1, 0]
|
39 |
+
self.save_dir = args.save_dir
|
40 |
+
# get data loader
|
41 |
+
self.data_dict = load_yaml(args.data_path)
|
42 |
+
self.num_classes = self.data_dict['nc']
|
43 |
+
self.train_loader, self.val_loader = self.get_data_loader(args, cfg, self.data_dict)
|
44 |
+
# get model and optimizer
|
45 |
+
model = self.get_model(args, cfg, self.num_classes, device)
|
46 |
+
self.optimizer = self.get_optimizer(args, cfg, model)
|
47 |
+
self.scheduler, self.lf = self.get_lr_scheduler(args, cfg, self.optimizer)
|
48 |
+
self.ema = ModelEMA(model) if self.main_process else None
|
49 |
+
# tensorboard
|
50 |
+
self.tblogger = SummaryWriter(self.save_dir) if self.main_process else None
|
51 |
+
self.start_epoch = 0
|
52 |
+
#resume
|
53 |
+
if hasattr(self, "ckpt"):
|
54 |
+
resume_state_dict = self.ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
55 |
+
model.load_state_dict(resume_state_dict, strict=True) # load
|
56 |
+
self.start_epoch = self.ckpt['epoch'] + 1
|
57 |
+
self.optimizer.load_state_dict(self.ckpt['optimizer'])
|
58 |
+
if self.main_process:
|
59 |
+
self.ema.ema.load_state_dict(self.ckpt['ema'].float().state_dict())
|
60 |
+
self.ema.updates = self.ckpt['updates']
|
61 |
+
self.model = self.parallel_model(args, model, device)
|
62 |
+
self.model.nc, self.model.names = self.data_dict['nc'], self.data_dict['names']
|
63 |
+
|
64 |
+
self.max_epoch = args.epochs
|
65 |
+
self.max_stepnum = len(self.train_loader)
|
66 |
+
self.batch_size = args.batch_size
|
67 |
+
self.img_size = args.img_size
|
68 |
+
|
69 |
+
# Training Process
|
70 |
+
|
71 |
+
def train(self):
|
72 |
+
try:
|
73 |
+
self.train_before_loop()
|
74 |
+
for self.epoch in range(self.start_epoch, self.max_epoch):
|
75 |
+
self.train_in_loop()
|
76 |
+
|
77 |
+
except Exception as _:
|
78 |
+
LOGGER.error('ERROR in training loop or eval/save model.')
|
79 |
+
raise
|
80 |
+
finally:
|
81 |
+
self.train_after_loop()
|
82 |
+
|
83 |
+
# Training loop for each epoch
|
84 |
+
def train_in_loop(self):
|
85 |
+
try:
|
86 |
+
self.prepare_for_steps()
|
87 |
+
for self.step, self.batch_data in self.pbar:
|
88 |
+
self.train_in_steps()
|
89 |
+
self.print_details()
|
90 |
+
except Exception as _:
|
91 |
+
LOGGER.error('ERROR in training steps.')
|
92 |
+
raise
|
93 |
+
try:
|
94 |
+
self.eval_and_save()
|
95 |
+
except Exception as _:
|
96 |
+
LOGGER.error('ERROR in evaluate and save model.')
|
97 |
+
raise
|
98 |
+
|
99 |
+
# Training loop for batchdata
|
100 |
+
def train_in_steps(self):
|
101 |
+
images, targets = self.prepro_data(self.batch_data, self.device)
|
102 |
+
# forward
|
103 |
+
with amp.autocast(enabled=self.device != 'cpu'):
|
104 |
+
preds = self.model(images)
|
105 |
+
total_loss, loss_items = self.compute_loss(preds, targets)
|
106 |
+
if self.rank != -1:
|
107 |
+
total_loss *= self.world_size
|
108 |
+
# backward
|
109 |
+
self.scaler.scale(total_loss).backward()
|
110 |
+
self.loss_items = loss_items
|
111 |
+
self.update_optimizer()
|
112 |
+
|
113 |
+
def eval_and_save(self):
|
114 |
+
remaining_epochs = self.max_epoch - self.epoch
|
115 |
+
eval_interval = self.args.eval_interval if remaining_epochs > self.args.heavy_eval_range else 1
|
116 |
+
is_val_epoch = (not self.args.eval_final_only or (remaining_epochs == 1)) and (self.epoch % eval_interval == 0)
|
117 |
+
if self.main_process:
|
118 |
+
self.ema.update_attr(self.model, include=['nc', 'names', 'stride']) # update attributes for ema model
|
119 |
+
if is_val_epoch:
|
120 |
+
self.eval_model()
|
121 |
+
self.ap = self.evaluate_results[0] * 0.1 + self.evaluate_results[1] * 0.9
|
122 |
+
self.best_ap = max(self.ap, self.best_ap)
|
123 |
+
# save ckpt
|
124 |
+
ckpt = {
|
125 |
+
'model': deepcopy(de_parallel(self.model)).half(),
|
126 |
+
'ema': deepcopy(self.ema.ema).half(),
|
127 |
+
'updates': self.ema.updates,
|
128 |
+
'optimizer': self.optimizer.state_dict(),
|
129 |
+
'epoch': self.epoch,
|
130 |
+
}
|
131 |
+
|
132 |
+
save_ckpt_dir = osp.join(self.save_dir, 'weights')
|
133 |
+
save_checkpoint(ckpt, (is_val_epoch) and (self.ap == self.best_ap), save_ckpt_dir, model_name='last_ckpt')
|
134 |
+
del ckpt
|
135 |
+
# log for tensorboard
|
136 |
+
write_tblog(self.tblogger, self.epoch, self.evaluate_results, self.mean_loss)
|
137 |
+
|
138 |
+
def eval_model(self):
|
139 |
+
results = eval.run(self.data_dict,
|
140 |
+
batch_size=self.batch_size // self.world_size * 2,
|
141 |
+
img_size=self.img_size,
|
142 |
+
model=self.ema.ema,
|
143 |
+
dataloader=self.val_loader,
|
144 |
+
save_dir=self.save_dir,
|
145 |
+
task='train')
|
146 |
+
|
147 |
+
LOGGER.info(f"Epoch: {self.epoch} | mAP@0.5: {results[0]} | mAP@0.50:0.95: {results[1]}")
|
148 |
+
self.evaluate_results = results[:2]
|
149 |
+
|
150 |
+
def train_before_loop(self):
|
151 |
+
LOGGER.info('Training start...')
|
152 |
+
self.start_time = time.time()
|
153 |
+
self.warmup_stepnum = max(round(self.cfg.solver.warmup_epochs * self.max_stepnum), 1000)
|
154 |
+
self.scheduler.last_epoch = self.start_epoch - 1
|
155 |
+
self.last_opt_step = -1
|
156 |
+
self.scaler = amp.GradScaler(enabled=self.device != 'cpu')
|
157 |
+
|
158 |
+
self.best_ap, self.ap = 0.0, 0.0
|
159 |
+
self.evaluate_results = (0, 0) # AP50, AP50_95
|
160 |
+
self.compute_loss = ComputeLoss(iou_type=self.cfg.model.head.iou_type)
|
161 |
+
|
162 |
+
def prepare_for_steps(self):
|
163 |
+
if self.epoch > self.start_epoch:
|
164 |
+
self.scheduler.step()
|
165 |
+
self.model.train()
|
166 |
+
if self.rank != -1:
|
167 |
+
self.train_loader.sampler.set_epoch(self.epoch)
|
168 |
+
self.mean_loss = torch.zeros(4, device=self.device)
|
169 |
+
self.optimizer.zero_grad()
|
170 |
+
|
171 |
+
LOGGER.info(('\n' + '%10s' * 5) % ('Epoch', 'iou_loss', 'l1_loss', 'obj_loss', 'cls_loss'))
|
172 |
+
self.pbar = enumerate(self.train_loader)
|
173 |
+
if self.main_process:
|
174 |
+
self.pbar = tqdm(self.pbar, total=self.max_stepnum, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
|
175 |
+
|
176 |
+
# Print loss after each steps
|
177 |
+
def print_details(self):
|
178 |
+
if self.main_process:
|
179 |
+
self.mean_loss = (self.mean_loss * self.step + self.loss_items) / (self.step + 1)
|
180 |
+
self.pbar.set_description(('%10s' + '%10.4g' * 4) % (f'{self.epoch}/{self.max_epoch - 1}', \
|
181 |
+
*(self.mean_loss)))
|
182 |
+
|
183 |
+
# Empty cache if training finished
|
184 |
+
def train_after_loop(self):
|
185 |
+
if self.main_process:
|
186 |
+
LOGGER.info(f'\nTraining completed in {(time.time() - self.start_time) / 3600:.3f} hours.')
|
187 |
+
save_ckpt_dir = osp.join(self.save_dir, 'weights')
|
188 |
+
strip_optimizer(save_ckpt_dir, self.epoch) # strip optimizers for saved pt model
|
189 |
+
if self.device != 'cpu':
|
190 |
+
torch.cuda.empty_cache()
|
191 |
+
|
192 |
+
def update_optimizer(self):
|
193 |
+
curr_step = self.step + self.max_stepnum * self.epoch
|
194 |
+
self.accumulate = max(1, round(64 / self.batch_size))
|
195 |
+
if curr_step <= self.warmup_stepnum:
|
196 |
+
self.accumulate = max(1, np.interp(curr_step, [0, self.warmup_stepnum], [1, 64 / self.batch_size]).round())
|
197 |
+
for k, param in enumerate(self.optimizer.param_groups):
|
198 |
+
warmup_bias_lr = self.cfg.solver.warmup_bias_lr if k == 2 else 0.0
|
199 |
+
param['lr'] = np.interp(curr_step, [0, self.warmup_stepnum], [warmup_bias_lr, param['initial_lr'] * self.lf(self.epoch)])
|
200 |
+
if 'momentum' in param:
|
201 |
+
param['momentum'] = np.interp(curr_step, [0, self.warmup_stepnum], [self.cfg.solver.warmup_momentum, self.cfg.solver.momentum])
|
202 |
+
if curr_step - self.last_opt_step >= self.accumulate:
|
203 |
+
self.scaler.step(self.optimizer)
|
204 |
+
self.scaler.update()
|
205 |
+
self.optimizer.zero_grad()
|
206 |
+
if self.ema:
|
207 |
+
self.ema.update(self.model)
|
208 |
+
self.last_opt_step = curr_step
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def get_data_loader(args, cfg, data_dict):
|
212 |
+
train_path, val_path = data_dict['train'], data_dict['val']
|
213 |
+
# check data
|
214 |
+
nc = int(data_dict['nc'])
|
215 |
+
class_names = data_dict['names']
|
216 |
+
assert len(class_names) == nc, f'the length of class names does not match the number of classes defined'
|
217 |
+
grid_size = max(int(max(cfg.model.head.strides)), 32)
|
218 |
+
# create train dataloader
|
219 |
+
train_loader = create_dataloader(train_path, args.img_size, args.batch_size // args.world_size, grid_size,
|
220 |
+
hyp=dict(cfg.data_aug), augment=True, rect=False, rank=args.local_rank,
|
221 |
+
workers=args.workers, shuffle=True, check_images=args.check_images,
|
222 |
+
check_labels=args.check_labels, data_dict=data_dict, task='train')[0]
|
223 |
+
# create val dataloader
|
224 |
+
val_loader = None
|
225 |
+
if args.rank in [-1, 0]:
|
226 |
+
val_loader = create_dataloader(val_path, args.img_size, args.batch_size // args.world_size * 2, grid_size,
|
227 |
+
hyp=dict(cfg.data_aug), rect=True, rank=-1, pad=0.5,
|
228 |
+
workers=args.workers, check_images=args.check_images,
|
229 |
+
check_labels=args.check_labels, data_dict=data_dict, task='val')[0]
|
230 |
+
|
231 |
+
return train_loader, val_loader
|
232 |
+
|
233 |
+
@staticmethod
|
234 |
+
def prepro_data(batch_data, device):
|
235 |
+
images = batch_data[0].to(device, non_blocking=True).float() / 255
|
236 |
+
targets = batch_data[1].to(device)
|
237 |
+
return images, targets
|
238 |
+
|
239 |
+
def get_model(self, args, cfg, nc, device):
|
240 |
+
model = build_model(cfg, nc, device)
|
241 |
+
weights = cfg.model.pretrained
|
242 |
+
if weights: # finetune if pretrained model is set
|
243 |
+
LOGGER.info(f'Loading state_dict from {weights} for fine-tuning...')
|
244 |
+
model = load_state_dict(weights, model, map_location=device)
|
245 |
+
LOGGER.info('Model: {}'.format(model))
|
246 |
+
return model
|
247 |
+
|
248 |
+
@staticmethod
|
249 |
+
def parallel_model(args, model, device):
|
250 |
+
# If DP mode
|
251 |
+
dp_mode = device.type != 'cpu' and args.rank == -1
|
252 |
+
if dp_mode and torch.cuda.device_count() > 1:
|
253 |
+
LOGGER.warning('WARNING: DP not recommended, use DDP instead.\n')
|
254 |
+
model = torch.nn.DataParallel(model)
|
255 |
+
|
256 |
+
# If DDP mode
|
257 |
+
ddp_mode = device.type != 'cpu' and args.rank != -1
|
258 |
+
if ddp_mode:
|
259 |
+
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
|
260 |
+
|
261 |
+
return model
|
262 |
+
|
263 |
+
def get_optimizer(self, args, cfg, model):
|
264 |
+
accumulate = max(1, round(64 / args.batch_size))
|
265 |
+
cfg.solver.weight_decay *= args.batch_size * accumulate / 64
|
266 |
+
optimizer = build_optimizer(cfg, model)
|
267 |
+
return optimizer
|
268 |
+
|
269 |
+
@staticmethod
|
270 |
+
def get_lr_scheduler(args, cfg, optimizer):
|
271 |
+
epochs = args.epochs
|
272 |
+
lr_scheduler, lf = build_lr_scheduler(cfg, optimizer, epochs)
|
273 |
+
return lr_scheduler, lf
|