Spaces:
Build error
Build error
commit
Browse files- yolov6/models/loss.py +411 -0
yolov6/models/loss.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
|
4 |
+
# The code is based on
|
5 |
+
# https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
|
6 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import numpy as np
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from yolov6.utils.figure_iou import IOUloss, pairwise_bbox_iou
|
13 |
+
|
14 |
+
|
15 |
+
class ComputeLoss:
|
16 |
+
'''Loss computation func.
|
17 |
+
This func contains SimOTA and siou loss.
|
18 |
+
'''
|
19 |
+
def __init__(self,
|
20 |
+
reg_weight=5.0,
|
21 |
+
iou_weight=3.0,
|
22 |
+
cls_weight=1.0,
|
23 |
+
center_radius=2.5,
|
24 |
+
eps=1e-7,
|
25 |
+
in_channels=[256, 512, 1024],
|
26 |
+
strides=[8, 16, 32],
|
27 |
+
n_anchors=1,
|
28 |
+
iou_type='ciou'
|
29 |
+
):
|
30 |
+
|
31 |
+
self.reg_weight = reg_weight
|
32 |
+
self.iou_weight = iou_weight
|
33 |
+
self.cls_weight = cls_weight
|
34 |
+
|
35 |
+
self.center_radius = center_radius
|
36 |
+
self.eps = eps
|
37 |
+
self.n_anchors = n_anchors
|
38 |
+
self.strides = strides
|
39 |
+
self.grids = [torch.zeros(1)] * len(in_channels)
|
40 |
+
|
41 |
+
# Define criteria
|
42 |
+
self.l1_loss = nn.L1Loss(reduction="none")
|
43 |
+
self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
|
44 |
+
self.iou_loss = IOUloss(iou_type=iou_type, reduction="none")
|
45 |
+
|
46 |
+
def __call__(
|
47 |
+
self,
|
48 |
+
outputs,
|
49 |
+
targets
|
50 |
+
):
|
51 |
+
dtype = outputs[0].type()
|
52 |
+
device = targets.device
|
53 |
+
loss_cls, loss_obj, loss_iou, loss_l1 = torch.zeros(1, device=device), torch.zeros(1, device=device), \
|
54 |
+
torch.zeros(1, device=device), torch.zeros(1, device=device)
|
55 |
+
num_classes = outputs[0].shape[-1] - 5
|
56 |
+
|
57 |
+
outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides = self.get_outputs_and_grids(
|
58 |
+
outputs, self.strides, dtype, device)
|
59 |
+
|
60 |
+
total_num_anchors = outputs.shape[1]
|
61 |
+
bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4]
|
62 |
+
bbox_preds_org = outputs_origin[:, :, :4] # [batch, n_anchors_all, 4]
|
63 |
+
obj_preds = outputs[:, :, 4].unsqueeze(-1) # [batch, n_anchors_all, 1]
|
64 |
+
cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls]
|
65 |
+
|
66 |
+
# targets
|
67 |
+
batch_size = bbox_preds.shape[0]
|
68 |
+
targets_list = np.zeros((batch_size, 1, 5)).tolist()
|
69 |
+
for i, item in enumerate(targets.cpu().numpy().tolist()):
|
70 |
+
targets_list[int(item[0])].append(item[1:])
|
71 |
+
max_len = max((len(l) for l in targets_list))
|
72 |
+
|
73 |
+
targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
|
74 |
+
num_targets_list = (targets.sum(dim=2) > 0).sum(dim=1) # number of objects
|
75 |
+
|
76 |
+
num_fg, num_gts = 0, 0
|
77 |
+
cls_targets, reg_targets, l1_targets, obj_targets, fg_masks = [], [], [], [], []
|
78 |
+
|
79 |
+
for batch_idx in range(batch_size):
|
80 |
+
num_gt = int(num_targets_list[batch_idx])
|
81 |
+
num_gts += num_gt
|
82 |
+
if num_gt == 0:
|
83 |
+
cls_target = outputs.new_zeros((0, num_classes))
|
84 |
+
reg_target = outputs.new_zeros((0, 4))
|
85 |
+
l1_target = outputs.new_zeros((0, 4))
|
86 |
+
obj_target = outputs.new_zeros((total_num_anchors, 1))
|
87 |
+
fg_mask = outputs.new_zeros(total_num_anchors).bool()
|
88 |
+
else:
|
89 |
+
|
90 |
+
gt_bboxes_per_image = targets[batch_idx, :num_gt, 1:5].mul_(gt_bboxes_scale)
|
91 |
+
gt_classes = targets[batch_idx, :num_gt, 0]
|
92 |
+
bboxes_preds_per_image = bbox_preds[batch_idx]
|
93 |
+
cls_preds_per_image = cls_preds[batch_idx]
|
94 |
+
obj_preds_per_image = obj_preds[batch_idx]
|
95 |
+
|
96 |
+
try:
|
97 |
+
(
|
98 |
+
gt_matched_classes,
|
99 |
+
fg_mask,
|
100 |
+
pred_ious_this_matching,
|
101 |
+
matched_gt_inds,
|
102 |
+
num_fg_img,
|
103 |
+
) = self.get_assignments(
|
104 |
+
batch_idx,
|
105 |
+
num_gt,
|
106 |
+
total_num_anchors,
|
107 |
+
gt_bboxes_per_image,
|
108 |
+
gt_classes,
|
109 |
+
bboxes_preds_per_image,
|
110 |
+
cls_preds_per_image,
|
111 |
+
obj_preds_per_image,
|
112 |
+
expanded_strides,
|
113 |
+
xy_shifts,
|
114 |
+
num_classes
|
115 |
+
)
|
116 |
+
|
117 |
+
except RuntimeError:
|
118 |
+
print(
|
119 |
+
"OOM RuntimeError is raised due to the huge memory cost during label assignment. \
|
120 |
+
CPU mode is applied in this batch. If you want to avoid this issue, \
|
121 |
+
try to reduce the batch size or image size."
|
122 |
+
)
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
print("------------CPU Mode for This Batch-------------")
|
125 |
+
|
126 |
+
_gt_bboxes_per_image = gt_bboxes_per_image.cpu().float()
|
127 |
+
_gt_classes = gt_classes.cpu().float()
|
128 |
+
_bboxes_preds_per_image = bboxes_preds_per_image.cpu().float()
|
129 |
+
_cls_preds_per_image = cls_preds_per_image.cpu().float()
|
130 |
+
_obj_preds_per_image = obj_preds_per_image.cpu().float()
|
131 |
+
|
132 |
+
_expanded_strides = expanded_strides.cpu().float()
|
133 |
+
_xy_shifts = xy_shifts.cpu()
|
134 |
+
|
135 |
+
(
|
136 |
+
gt_matched_classes,
|
137 |
+
fg_mask,
|
138 |
+
pred_ious_this_matching,
|
139 |
+
matched_gt_inds,
|
140 |
+
num_fg_img,
|
141 |
+
) = self.get_assignments(
|
142 |
+
batch_idx,
|
143 |
+
num_gt,
|
144 |
+
total_num_anchors,
|
145 |
+
_gt_bboxes_per_image,
|
146 |
+
_gt_classes,
|
147 |
+
_bboxes_preds_per_image,
|
148 |
+
_cls_preds_per_image,
|
149 |
+
_obj_preds_per_image,
|
150 |
+
_expanded_strides,
|
151 |
+
_xy_shifts,
|
152 |
+
num_classes
|
153 |
+
)
|
154 |
+
|
155 |
+
gt_matched_classes = gt_matched_classes.cuda()
|
156 |
+
fg_mask = fg_mask.cuda()
|
157 |
+
pred_ious_this_matching = pred_ious_this_matching.cuda()
|
158 |
+
matched_gt_inds = matched_gt_inds.cuda()
|
159 |
+
|
160 |
+
torch.cuda.empty_cache()
|
161 |
+
num_fg += num_fg_img
|
162 |
+
if num_fg_img > 0:
|
163 |
+
cls_target = F.one_hot(
|
164 |
+
gt_matched_classes.to(torch.int64), num_classes
|
165 |
+
) * pred_ious_this_matching.unsqueeze(-1)
|
166 |
+
obj_target = fg_mask.unsqueeze(-1)
|
167 |
+
reg_target = gt_bboxes_per_image[matched_gt_inds]
|
168 |
+
|
169 |
+
l1_target = self.get_l1_target(
|
170 |
+
outputs.new_zeros((num_fg_img, 4)),
|
171 |
+
gt_bboxes_per_image[matched_gt_inds],
|
172 |
+
expanded_strides[0][fg_mask],
|
173 |
+
xy_shifts=xy_shifts[0][fg_mask],
|
174 |
+
)
|
175 |
+
|
176 |
+
cls_targets.append(cls_target)
|
177 |
+
reg_targets.append(reg_target)
|
178 |
+
obj_targets.append(obj_target)
|
179 |
+
l1_targets.append(l1_target)
|
180 |
+
fg_masks.append(fg_mask)
|
181 |
+
|
182 |
+
cls_targets = torch.cat(cls_targets, 0)
|
183 |
+
reg_targets = torch.cat(reg_targets, 0)
|
184 |
+
obj_targets = torch.cat(obj_targets, 0)
|
185 |
+
l1_targets = torch.cat(l1_targets, 0)
|
186 |
+
fg_masks = torch.cat(fg_masks, 0)
|
187 |
+
|
188 |
+
num_fg = max(num_fg, 1)
|
189 |
+
# loss
|
190 |
+
loss_iou += (self.iou_loss(bbox_preds.view(-1, 4)[fg_masks].T, reg_targets)).sum() / num_fg
|
191 |
+
loss_l1 += (self.l1_loss(bbox_preds_org.view(-1, 4)[fg_masks], l1_targets)).sum() / num_fg
|
192 |
+
|
193 |
+
loss_obj += (self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets*1.0)).sum() / num_fg
|
194 |
+
loss_cls += (self.bcewithlog_loss(cls_preds.view(-1, num_classes)[fg_masks], cls_targets)).sum() / num_fg
|
195 |
+
|
196 |
+
total_losses = self.reg_weight * loss_iou + loss_l1 + loss_obj + loss_cls
|
197 |
+
return total_losses, torch.cat((self.reg_weight * loss_iou, loss_l1, loss_obj, loss_cls)).detach()
|
198 |
+
|
199 |
+
def decode_output(self, output, k, stride, dtype, device):
|
200 |
+
grid = self.grids[k].to(device)
|
201 |
+
batch_size = output.shape[0]
|
202 |
+
hsize, wsize = output.shape[2:4]
|
203 |
+
if grid.shape[2:4] != output.shape[2:4]:
|
204 |
+
yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
|
205 |
+
grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype).to(device)
|
206 |
+
self.grids[k] = grid
|
207 |
+
|
208 |
+
output = output.reshape(batch_size, self.n_anchors * hsize * wsize, -1)
|
209 |
+
output_origin = output.clone()
|
210 |
+
grid = grid.view(1, -1, 2)
|
211 |
+
|
212 |
+
output[..., :2] = (output[..., :2] + grid) * stride
|
213 |
+
output[..., 2:4] = torch.exp(output[..., 2:4]) * stride
|
214 |
+
|
215 |
+
return output, output_origin, grid, hsize, wsize
|
216 |
+
|
217 |
+
def get_outputs_and_grids(self, outputs, strides, dtype, device):
|
218 |
+
xy_shifts = []
|
219 |
+
expanded_strides = []
|
220 |
+
outputs_new = []
|
221 |
+
outputs_origin = []
|
222 |
+
|
223 |
+
for k, output in enumerate(outputs):
|
224 |
+
output, output_origin, grid, feat_h, feat_w = self.decode_output(
|
225 |
+
output, k, strides[k], dtype, device)
|
226 |
+
|
227 |
+
xy_shift = grid
|
228 |
+
expanded_stride = torch.full((1, grid.shape[1], 1), strides[k], dtype=grid.dtype, device=grid.device)
|
229 |
+
|
230 |
+
xy_shifts.append(xy_shift)
|
231 |
+
expanded_strides.append(expanded_stride)
|
232 |
+
outputs_new.append(output)
|
233 |
+
outputs_origin.append(output_origin)
|
234 |
+
|
235 |
+
xy_shifts = torch.cat(xy_shifts, 1) # [1, n_anchors_all, 2]
|
236 |
+
expanded_strides = torch.cat(expanded_strides, 1) # [1, n_anchors_all, 1]
|
237 |
+
outputs_origin = torch.cat(outputs_origin, 1)
|
238 |
+
outputs = torch.cat(outputs_new, 1)
|
239 |
+
|
240 |
+
feat_h *= strides[-1]
|
241 |
+
feat_w *= strides[-1]
|
242 |
+
gt_bboxes_scale = torch.Tensor([[feat_w, feat_h, feat_w, feat_h]]).type_as(outputs)
|
243 |
+
|
244 |
+
return outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides
|
245 |
+
|
246 |
+
def get_l1_target(self, l1_target, gt, stride, xy_shifts, eps=1e-8):
|
247 |
+
|
248 |
+
l1_target[:, 0:2] = gt[:, 0:2] / stride - xy_shifts
|
249 |
+
l1_target[:, 2:4] = torch.log(gt[:, 2:4] / stride + eps)
|
250 |
+
return l1_target
|
251 |
+
|
252 |
+
@torch.no_grad()
|
253 |
+
def get_assignments(
|
254 |
+
self,
|
255 |
+
batch_idx,
|
256 |
+
num_gt,
|
257 |
+
total_num_anchors,
|
258 |
+
gt_bboxes_per_image,
|
259 |
+
gt_classes,
|
260 |
+
bboxes_preds_per_image,
|
261 |
+
cls_preds_per_image,
|
262 |
+
obj_preds_per_image,
|
263 |
+
expanded_strides,
|
264 |
+
xy_shifts,
|
265 |
+
num_classes
|
266 |
+
):
|
267 |
+
|
268 |
+
fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
|
269 |
+
gt_bboxes_per_image,
|
270 |
+
expanded_strides,
|
271 |
+
xy_shifts,
|
272 |
+
total_num_anchors,
|
273 |
+
num_gt,
|
274 |
+
)
|
275 |
+
|
276 |
+
bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
|
277 |
+
cls_preds_ = cls_preds_per_image[fg_mask]
|
278 |
+
obj_preds_ = obj_preds_per_image[fg_mask]
|
279 |
+
num_in_boxes_anchor = bboxes_preds_per_image.shape[0]
|
280 |
+
|
281 |
+
# cost
|
282 |
+
pair_wise_ious = pairwise_bbox_iou(gt_bboxes_per_image, bboxes_preds_per_image, box_format='xywh')
|
283 |
+
pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
|
284 |
+
|
285 |
+
gt_cls_per_image = (
|
286 |
+
F.one_hot(gt_classes.to(torch.int64), num_classes)
|
287 |
+
.float()
|
288 |
+
.unsqueeze(1)
|
289 |
+
.repeat(1, num_in_boxes_anchor, 1)
|
290 |
+
)
|
291 |
+
|
292 |
+
with torch.cuda.amp.autocast(enabled=False):
|
293 |
+
cls_preds_ = (
|
294 |
+
cls_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
|
295 |
+
* obj_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
|
296 |
+
)
|
297 |
+
pair_wise_cls_loss = F.binary_cross_entropy(
|
298 |
+
cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
|
299 |
+
).sum(-1)
|
300 |
+
del cls_preds_, obj_preds_
|
301 |
+
|
302 |
+
cost = (
|
303 |
+
self.cls_weight * pair_wise_cls_loss
|
304 |
+
+ self.iou_weight * pair_wise_ious_loss
|
305 |
+
+ 100000.0 * (~is_in_boxes_and_center)
|
306 |
+
)
|
307 |
+
|
308 |
+
(
|
309 |
+
num_fg,
|
310 |
+
gt_matched_classes,
|
311 |
+
pred_ious_this_matching,
|
312 |
+
matched_gt_inds,
|
313 |
+
) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
|
314 |
+
|
315 |
+
del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
|
316 |
+
|
317 |
+
return (
|
318 |
+
gt_matched_classes,
|
319 |
+
fg_mask,
|
320 |
+
pred_ious_this_matching,
|
321 |
+
matched_gt_inds,
|
322 |
+
num_fg,
|
323 |
+
)
|
324 |
+
|
325 |
+
def get_in_boxes_info(
|
326 |
+
self,
|
327 |
+
gt_bboxes_per_image,
|
328 |
+
expanded_strides,
|
329 |
+
xy_shifts,
|
330 |
+
total_num_anchors,
|
331 |
+
num_gt,
|
332 |
+
):
|
333 |
+
expanded_strides_per_image = expanded_strides[0]
|
334 |
+
xy_shifts_per_image = xy_shifts[0] * expanded_strides_per_image
|
335 |
+
xy_centers_per_image = (
|
336 |
+
(xy_shifts_per_image + 0.5 * expanded_strides_per_image)
|
337 |
+
.unsqueeze(0)
|
338 |
+
.repeat(num_gt, 1, 1)
|
339 |
+
) # [n_anchor, 2] -> [n_gt, n_anchor, 2]
|
340 |
+
|
341 |
+
gt_bboxes_per_image_lt = (
|
342 |
+
(gt_bboxes_per_image[:, 0:2] - 0.5 * gt_bboxes_per_image[:, 2:4])
|
343 |
+
.unsqueeze(1)
|
344 |
+
.repeat(1, total_num_anchors, 1)
|
345 |
+
)
|
346 |
+
gt_bboxes_per_image_rb = (
|
347 |
+
(gt_bboxes_per_image[:, 0:2] + 0.5 * gt_bboxes_per_image[:, 2:4])
|
348 |
+
.unsqueeze(1)
|
349 |
+
.repeat(1, total_num_anchors, 1)
|
350 |
+
) # [n_gt, 2] -> [n_gt, n_anchor, 2]
|
351 |
+
|
352 |
+
b_lt = xy_centers_per_image - gt_bboxes_per_image_lt
|
353 |
+
b_rb = gt_bboxes_per_image_rb - xy_centers_per_image
|
354 |
+
bbox_deltas = torch.cat([b_lt, b_rb], 2)
|
355 |
+
|
356 |
+
is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
|
357 |
+
is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
|
358 |
+
|
359 |
+
# in fixed center
|
360 |
+
gt_bboxes_per_image_lt = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
|
361 |
+
1, total_num_anchors, 1
|
362 |
+
) - self.center_radius * expanded_strides_per_image.unsqueeze(0)
|
363 |
+
gt_bboxes_per_image_rb = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
|
364 |
+
1, total_num_anchors, 1
|
365 |
+
) + self.center_radius * expanded_strides_per_image.unsqueeze(0)
|
366 |
+
|
367 |
+
c_lt = xy_centers_per_image - gt_bboxes_per_image_lt
|
368 |
+
c_rb = gt_bboxes_per_image_rb - xy_centers_per_image
|
369 |
+
center_deltas = torch.cat([c_lt, c_rb], 2)
|
370 |
+
is_in_centers = center_deltas.min(dim=-1).values > 0.0
|
371 |
+
is_in_centers_all = is_in_centers.sum(dim=0) > 0
|
372 |
+
|
373 |
+
# in boxes and in centers
|
374 |
+
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
|
375 |
+
|
376 |
+
is_in_boxes_and_center = (
|
377 |
+
is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
|
378 |
+
)
|
379 |
+
return is_in_boxes_anchor, is_in_boxes_and_center
|
380 |
+
|
381 |
+
def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
|
382 |
+
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
|
383 |
+
ious_in_boxes_matrix = pair_wise_ious
|
384 |
+
n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
|
385 |
+
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
|
386 |
+
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
|
387 |
+
dynamic_ks = dynamic_ks.tolist()
|
388 |
+
|
389 |
+
for gt_idx in range(num_gt):
|
390 |
+
_, pos_idx = torch.topk(
|
391 |
+
cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
|
392 |
+
)
|
393 |
+
matching_matrix[gt_idx][pos_idx] = 1
|
394 |
+
del topk_ious, dynamic_ks, pos_idx
|
395 |
+
|
396 |
+
anchor_matching_gt = matching_matrix.sum(0)
|
397 |
+
if (anchor_matching_gt > 1).sum() > 0:
|
398 |
+
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
|
399 |
+
matching_matrix[:, anchor_matching_gt > 1] *= 0
|
400 |
+
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
|
401 |
+
fg_mask_inboxes = matching_matrix.sum(0) > 0
|
402 |
+
num_fg = fg_mask_inboxes.sum().item()
|
403 |
+
fg_mask[fg_mask.clone()] = fg_mask_inboxes
|
404 |
+
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
|
405 |
+
gt_matched_classes = gt_classes[matched_gt_inds]
|
406 |
+
|
407 |
+
pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
|
408 |
+
fg_mask_inboxes
|
409 |
+
]
|
410 |
+
|
411 |
+
return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds
|