Spaces:
Build error
Build error
commit
Browse files- yolov6/layers/common.py +501 -0
yolov6/layers/common.py
CHANGED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
|
4 |
+
import warnings
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from yolov6.layers.dbb_transforms import *
|
12 |
+
|
13 |
+
|
14 |
+
class SiLU(nn.Module):
|
15 |
+
'''Activation of SiLU'''
|
16 |
+
@staticmethod
|
17 |
+
def forward(x):
|
18 |
+
return x * torch.sigmoid(x)
|
19 |
+
|
20 |
+
|
21 |
+
class Conv(nn.Module):
|
22 |
+
'''Normal Conv with SiLU activation'''
|
23 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):
|
24 |
+
super().__init__()
|
25 |
+
padding = kernel_size // 2
|
26 |
+
self.conv = nn.Conv2d(
|
27 |
+
in_channels,
|
28 |
+
out_channels,
|
29 |
+
kernel_size=kernel_size,
|
30 |
+
stride=stride,
|
31 |
+
padding=padding,
|
32 |
+
groups=groups,
|
33 |
+
bias=bias,
|
34 |
+
)
|
35 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
36 |
+
self.act = nn.SiLU()
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
return self.act(self.bn(self.conv(x)))
|
40 |
+
|
41 |
+
def forward_fuse(self, x):
|
42 |
+
return self.act(self.conv(x))
|
43 |
+
|
44 |
+
|
45 |
+
class SimConv(nn.Module):
|
46 |
+
'''Normal Conv with ReLU activation'''
|
47 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):
|
48 |
+
super().__init__()
|
49 |
+
padding = kernel_size // 2
|
50 |
+
self.conv = nn.Conv2d(
|
51 |
+
in_channels,
|
52 |
+
out_channels,
|
53 |
+
kernel_size=kernel_size,
|
54 |
+
stride=stride,
|
55 |
+
padding=padding,
|
56 |
+
groups=groups,
|
57 |
+
bias=bias,
|
58 |
+
)
|
59 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
60 |
+
self.act = nn.ReLU()
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
return self.act(self.bn(self.conv(x)))
|
64 |
+
|
65 |
+
def forward_fuse(self, x):
|
66 |
+
return self.act(self.conv(x))
|
67 |
+
|
68 |
+
|
69 |
+
class SimSPPF(nn.Module):
|
70 |
+
'''Simplified SPPF with ReLU activation'''
|
71 |
+
def __init__(self, in_channels, out_channels, kernel_size=5):
|
72 |
+
super().__init__()
|
73 |
+
c_ = in_channels // 2 # hidden channels
|
74 |
+
self.cv1 = SimConv(in_channels, c_, 1, 1)
|
75 |
+
self.cv2 = SimConv(c_ * 4, out_channels, 1, 1)
|
76 |
+
self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
x = self.cv1(x)
|
80 |
+
with warnings.catch_warnings():
|
81 |
+
warnings.simplefilter('ignore')
|
82 |
+
y1 = self.m(x)
|
83 |
+
y2 = self.m(y1)
|
84 |
+
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
|
85 |
+
|
86 |
+
|
87 |
+
class Transpose(nn.Module):
|
88 |
+
'''Normal Transpose, default for upsampling'''
|
89 |
+
def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
|
90 |
+
super().__init__()
|
91 |
+
self.upsample_transpose = torch.nn.ConvTranspose2d(
|
92 |
+
in_channels=in_channels,
|
93 |
+
out_channels=out_channels,
|
94 |
+
kernel_size=kernel_size,
|
95 |
+
stride=stride,
|
96 |
+
bias=True
|
97 |
+
)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
return self.upsample_transpose(x)
|
101 |
+
|
102 |
+
|
103 |
+
class Concat(nn.Module):
|
104 |
+
def __init__(self, dimension=1):
|
105 |
+
super().__init__()
|
106 |
+
self.d = dimension
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
return torch.cat(x, self.d)
|
110 |
+
|
111 |
+
|
112 |
+
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
|
113 |
+
'''Basic cell for rep-style block, including conv and bn'''
|
114 |
+
result = nn.Sequential()
|
115 |
+
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
116 |
+
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False))
|
117 |
+
result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
|
118 |
+
return result
|
119 |
+
|
120 |
+
|
121 |
+
class RepBlock(nn.Module):
|
122 |
+
'''
|
123 |
+
RepBlock is a stage block with rep-style basic block
|
124 |
+
'''
|
125 |
+
def __init__(self, in_channels, out_channels, n=1):
|
126 |
+
super().__init__()
|
127 |
+
self.conv1 = RepVGGBlock(in_channels, out_channels)
|
128 |
+
self.block = nn.Sequential(*(RepVGGBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
x = self.conv1(x)
|
132 |
+
if self.block is not None:
|
133 |
+
x = self.block(x)
|
134 |
+
return x
|
135 |
+
|
136 |
+
|
137 |
+
class RepVGGBlock(nn.Module):
|
138 |
+
'''RepVGGBlock is a basic rep-style block, including training and deploy status
|
139 |
+
This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
140 |
+
'''
|
141 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
142 |
+
stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
|
143 |
+
super(RepVGGBlock, self).__init__()
|
144 |
+
""" Initialization of the class.
|
145 |
+
Args:
|
146 |
+
in_channels (int): Number of channels in the input image
|
147 |
+
out_channels (int): Number of channels produced by the convolution
|
148 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
149 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
150 |
+
padding (int or tuple, optional): Zero-padding added to both sides of
|
151 |
+
the input. Default: 1
|
152 |
+
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
153 |
+
groups (int, optional): Number of blocked connections from input
|
154 |
+
channels to output channels. Default: 1
|
155 |
+
padding_mode (string, optional): Default: 'zeros'
|
156 |
+
deploy: Whether to be deploy status or training status. Default: False
|
157 |
+
use_se: Whether to use se. Default: False
|
158 |
+
"""
|
159 |
+
self.deploy = deploy
|
160 |
+
self.groups = groups
|
161 |
+
self.in_channels = in_channels
|
162 |
+
self.out_channels = out_channels
|
163 |
+
|
164 |
+
assert kernel_size == 3
|
165 |
+
assert padding == 1
|
166 |
+
|
167 |
+
padding_11 = padding - kernel_size // 2
|
168 |
+
|
169 |
+
self.nonlinearity = nn.ReLU()
|
170 |
+
|
171 |
+
if use_se:
|
172 |
+
raise NotImplementedError("se block not supported yet")
|
173 |
+
else:
|
174 |
+
self.se = nn.Identity()
|
175 |
+
|
176 |
+
if deploy:
|
177 |
+
self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
|
178 |
+
padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
|
179 |
+
|
180 |
+
else:
|
181 |
+
self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
|
182 |
+
self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
|
183 |
+
self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups)
|
184 |
+
|
185 |
+
def forward(self, inputs):
|
186 |
+
'''Forward process'''
|
187 |
+
if hasattr(self, 'rbr_reparam'):
|
188 |
+
return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
|
189 |
+
|
190 |
+
if self.rbr_identity is None:
|
191 |
+
id_out = 0
|
192 |
+
else:
|
193 |
+
id_out = self.rbr_identity(inputs)
|
194 |
+
|
195 |
+
return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
|
196 |
+
|
197 |
+
def get_equivalent_kernel_bias(self):
|
198 |
+
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
|
199 |
+
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
|
200 |
+
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
|
201 |
+
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
202 |
+
|
203 |
+
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
204 |
+
if kernel1x1 is None:
|
205 |
+
return 0
|
206 |
+
else:
|
207 |
+
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
208 |
+
|
209 |
+
def _fuse_bn_tensor(self, branch):
|
210 |
+
if branch is None:
|
211 |
+
return 0, 0
|
212 |
+
if isinstance(branch, nn.Sequential):
|
213 |
+
kernel = branch.conv.weight
|
214 |
+
running_mean = branch.bn.running_mean
|
215 |
+
running_var = branch.bn.running_var
|
216 |
+
gamma = branch.bn.weight
|
217 |
+
beta = branch.bn.bias
|
218 |
+
eps = branch.bn.eps
|
219 |
+
else:
|
220 |
+
assert isinstance(branch, nn.BatchNorm2d)
|
221 |
+
if not hasattr(self, 'id_tensor'):
|
222 |
+
input_dim = self.in_channels // self.groups
|
223 |
+
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
|
224 |
+
for i in range(self.in_channels):
|
225 |
+
kernel_value[i, i % input_dim, 1, 1] = 1
|
226 |
+
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
227 |
+
kernel = self.id_tensor
|
228 |
+
running_mean = branch.running_mean
|
229 |
+
running_var = branch.running_var
|
230 |
+
gamma = branch.weight
|
231 |
+
beta = branch.bias
|
232 |
+
eps = branch.eps
|
233 |
+
std = (running_var + eps).sqrt()
|
234 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
235 |
+
return kernel * t, beta - running_mean * gamma / std
|
236 |
+
|
237 |
+
def switch_to_deploy(self):
|
238 |
+
if hasattr(self, 'rbr_reparam'):
|
239 |
+
return
|
240 |
+
kernel, bias = self.get_equivalent_kernel_bias()
|
241 |
+
self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
|
242 |
+
kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
|
243 |
+
padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
|
244 |
+
self.rbr_reparam.weight.data = kernel
|
245 |
+
self.rbr_reparam.bias.data = bias
|
246 |
+
for para in self.parameters():
|
247 |
+
para.detach_()
|
248 |
+
self.__delattr__('rbr_dense')
|
249 |
+
self.__delattr__('rbr_1x1')
|
250 |
+
if hasattr(self, 'rbr_identity'):
|
251 |
+
self.__delattr__('rbr_identity')
|
252 |
+
if hasattr(self, 'id_tensor'):
|
253 |
+
self.__delattr__('id_tensor')
|
254 |
+
self.deploy = True
|
255 |
+
|
256 |
+
|
257 |
+
def conv_bn_v2(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
|
258 |
+
padding_mode='zeros'):
|
259 |
+
conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
|
260 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups,
|
261 |
+
bias=False, padding_mode=padding_mode)
|
262 |
+
bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True)
|
263 |
+
se = nn.Sequential()
|
264 |
+
se.add_module('conv', conv_layer)
|
265 |
+
se.add_module('bn', bn_layer)
|
266 |
+
return se
|
267 |
+
|
268 |
+
|
269 |
+
class IdentityBasedConv1x1(nn.Conv2d):
|
270 |
+
|
271 |
+
def __init__(self, channels, groups=1):
|
272 |
+
super(IdentityBasedConv1x1, self).__init__(in_channels=channels, out_channels=channels, kernel_size=1, stride=1, padding=0, groups=groups, bias=False)
|
273 |
+
|
274 |
+
assert channels % groups == 0
|
275 |
+
input_dim = channels // groups
|
276 |
+
id_value = np.zeros((channels, input_dim, 1, 1))
|
277 |
+
for i in range(channels):
|
278 |
+
id_value[i, i % input_dim, 0, 0] = 1
|
279 |
+
self.id_tensor = torch.from_numpy(id_value).type_as(self.weight)
|
280 |
+
nn.init.zeros_(self.weight)
|
281 |
+
|
282 |
+
def forward(self, input):
|
283 |
+
kernel = self.weight + self.id_tensor.to(self.weight.device)
|
284 |
+
result = F.conv2d(input, kernel, None, stride=1, padding=0, dilation=self.dilation, groups=self.groups)
|
285 |
+
return result
|
286 |
+
|
287 |
+
def get_actual_kernel(self):
|
288 |
+
return self.weight + self.id_tensor.to(self.weight.device)
|
289 |
+
|
290 |
+
|
291 |
+
class BNAndPadLayer(nn.Module):
|
292 |
+
def __init__(self,
|
293 |
+
pad_pixels,
|
294 |
+
num_features,
|
295 |
+
eps=1e-5,
|
296 |
+
momentum=0.1,
|
297 |
+
affine=True,
|
298 |
+
track_running_stats=True):
|
299 |
+
super(BNAndPadLayer, self).__init__()
|
300 |
+
self.bn = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats)
|
301 |
+
self.pad_pixels = pad_pixels
|
302 |
+
|
303 |
+
def forward(self, input):
|
304 |
+
output = self.bn(input)
|
305 |
+
if self.pad_pixels > 0:
|
306 |
+
if self.bn.affine:
|
307 |
+
pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt(self.bn.running_var + self.bn.eps)
|
308 |
+
else:
|
309 |
+
pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps)
|
310 |
+
output = F.pad(output, [self.pad_pixels] * 4)
|
311 |
+
pad_values = pad_values.view(1, -1, 1, 1)
|
312 |
+
output[:, :, 0:self.pad_pixels, :] = pad_values
|
313 |
+
output[:, :, -self.pad_pixels:, :] = pad_values
|
314 |
+
output[:, :, :, 0:self.pad_pixels] = pad_values
|
315 |
+
output[:, :, :, -self.pad_pixels:] = pad_values
|
316 |
+
return output
|
317 |
+
|
318 |
+
@property
|
319 |
+
def bn_weight(self):
|
320 |
+
return self.bn.weight
|
321 |
+
|
322 |
+
@property
|
323 |
+
def bn_bias(self):
|
324 |
+
return self.bn.bias
|
325 |
+
|
326 |
+
@property
|
327 |
+
def running_mean(self):
|
328 |
+
return self.bn.running_mean
|
329 |
+
|
330 |
+
@property
|
331 |
+
def running_var(self):
|
332 |
+
return self.bn.running_var
|
333 |
+
|
334 |
+
@property
|
335 |
+
def eps(self):
|
336 |
+
return self.bn.eps
|
337 |
+
|
338 |
+
|
339 |
+
class DBBBlock(nn.Module):
|
340 |
+
'''
|
341 |
+
RepBlock is a stage block with rep-style basic block
|
342 |
+
'''
|
343 |
+
def __init__(self, in_channels, out_channels, n=1):
|
344 |
+
super().__init__()
|
345 |
+
self.conv1 = DiverseBranchBlock(in_channels, out_channels)
|
346 |
+
self.block = nn.Sequential(*(DiverseBranchBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None
|
347 |
+
|
348 |
+
def forward(self, x):
|
349 |
+
x = self.conv1(x)
|
350 |
+
if self.block is not None:
|
351 |
+
x = self.block(x)
|
352 |
+
return x
|
353 |
+
|
354 |
+
|
355 |
+
class DiverseBranchBlock(nn.Module):
|
356 |
+
|
357 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
358 |
+
stride=1, padding=1, dilation=1, groups=1,
|
359 |
+
internal_channels_1x1_3x3=None,
|
360 |
+
deploy=False, nonlinear=nn.ReLU(), single_init=False):
|
361 |
+
super(DiverseBranchBlock, self).__init__()
|
362 |
+
self.deploy = deploy
|
363 |
+
|
364 |
+
if nonlinear is None:
|
365 |
+
self.nonlinear = nn.Identity()
|
366 |
+
else:
|
367 |
+
self.nonlinear = nonlinear
|
368 |
+
|
369 |
+
self.kernel_size = kernel_size
|
370 |
+
self.out_channels = out_channels
|
371 |
+
self.groups = groups
|
372 |
+
assert padding == kernel_size // 2
|
373 |
+
|
374 |
+
if deploy:
|
375 |
+
self.dbb_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
|
376 |
+
padding=padding, dilation=dilation, groups=groups, bias=True)
|
377 |
+
|
378 |
+
else:
|
379 |
+
|
380 |
+
self.dbb_origin = conv_bn_v2(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
381 |
+
|
382 |
+
self.dbb_avg = nn.Sequential()
|
383 |
+
if groups < out_channels:
|
384 |
+
self.dbb_avg.add_module('conv',
|
385 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
|
386 |
+
stride=1, padding=0, groups=groups, bias=False))
|
387 |
+
self.dbb_avg.add_module('bn', BNAndPadLayer(pad_pixels=padding, num_features=out_channels))
|
388 |
+
self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
|
389 |
+
self.dbb_1x1 = conv_bn_v2(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
|
390 |
+
padding=0, groups=groups)
|
391 |
+
else:
|
392 |
+
self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding))
|
393 |
+
|
394 |
+
self.dbb_avg.add_module('avgbn', nn.BatchNorm2d(out_channels))
|
395 |
+
|
396 |
+
if internal_channels_1x1_3x3 is None:
|
397 |
+
internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
|
398 |
+
|
399 |
+
self.dbb_1x1_kxk = nn.Sequential()
|
400 |
+
if internal_channels_1x1_3x3 == in_channels:
|
401 |
+
self.dbb_1x1_kxk.add_module('idconv1', IdentityBasedConv1x1(channels=in_channels, groups=groups))
|
402 |
+
else:
|
403 |
+
self.dbb_1x1_kxk.add_module('conv1', nn.Conv2d(in_channels=in_channels, out_channels=internal_channels_1x1_3x3,
|
404 |
+
kernel_size=1, stride=1, padding=0, groups=groups, bias=False))
|
405 |
+
self.dbb_1x1_kxk.add_module('bn1', BNAndPadLayer(pad_pixels=padding, num_features=internal_channels_1x1_3x3, affine=True))
|
406 |
+
self.dbb_1x1_kxk.add_module('conv2', nn.Conv2d(in_channels=internal_channels_1x1_3x3, out_channels=out_channels,
|
407 |
+
kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=False))
|
408 |
+
self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels))
|
409 |
+
|
410 |
+
# The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases.
|
411 |
+
if single_init:
|
412 |
+
# Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting.
|
413 |
+
self.single_init()
|
414 |
+
|
415 |
+
def get_equivalent_kernel_bias(self):
|
416 |
+
k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight, self.dbb_origin.bn)
|
417 |
+
|
418 |
+
if hasattr(self, 'dbb_1x1'):
|
419 |
+
k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight, self.dbb_1x1.bn)
|
420 |
+
k_1x1 = transVI_multiscale(k_1x1, self.kernel_size)
|
421 |
+
else:
|
422 |
+
k_1x1, b_1x1 = 0, 0
|
423 |
+
|
424 |
+
if hasattr(self.dbb_1x1_kxk, 'idconv1'):
|
425 |
+
k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()
|
426 |
+
else:
|
427 |
+
k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight
|
428 |
+
k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first, self.dbb_1x1_kxk.bn1)
|
429 |
+
k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2)
|
430 |
+
k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(k_1x1_kxk_first, b_1x1_kxk_first, k_1x1_kxk_second, b_1x1_kxk_second, groups=self.groups)
|
431 |
+
|
432 |
+
k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)
|
433 |
+
k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg.to(self.dbb_avg.avgbn.weight.device), self.dbb_avg.avgbn)
|
434 |
+
if hasattr(self.dbb_avg, 'conv'):
|
435 |
+
k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(self.dbb_avg.conv.weight, self.dbb_avg.bn)
|
436 |
+
k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(k_1x1_avg_first, b_1x1_avg_first, k_1x1_avg_second, b_1x1_avg_second, groups=self.groups)
|
437 |
+
else:
|
438 |
+
k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second
|
439 |
+
|
440 |
+
return transII_addbranch((k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged), (b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged))
|
441 |
+
|
442 |
+
def switch_to_deploy(self):
|
443 |
+
if hasattr(self, 'dbb_reparam'):
|
444 |
+
return
|
445 |
+
kernel, bias = self.get_equivalent_kernel_bias()
|
446 |
+
self.dbb_reparam = nn.Conv2d(in_channels=self.dbb_origin.conv.in_channels, out_channels=self.dbb_origin.conv.out_channels,
|
447 |
+
kernel_size=self.dbb_origin.conv.kernel_size, stride=self.dbb_origin.conv.stride,
|
448 |
+
padding=self.dbb_origin.conv.padding, dilation=self.dbb_origin.conv.dilation, groups=self.dbb_origin.conv.groups, bias=True)
|
449 |
+
self.dbb_reparam.weight.data = kernel
|
450 |
+
self.dbb_reparam.bias.data = bias
|
451 |
+
for para in self.parameters():
|
452 |
+
para.detach_()
|
453 |
+
self.__delattr__('dbb_origin')
|
454 |
+
self.__delattr__('dbb_avg')
|
455 |
+
if hasattr(self, 'dbb_1x1'):
|
456 |
+
self.__delattr__('dbb_1x1')
|
457 |
+
self.__delattr__('dbb_1x1_kxk')
|
458 |
+
|
459 |
+
def forward(self, inputs):
|
460 |
+
|
461 |
+
if hasattr(self, 'dbb_reparam'):
|
462 |
+
return self.nonlinear(self.dbb_reparam(inputs))
|
463 |
+
|
464 |
+
out = self.dbb_origin(inputs)
|
465 |
+
if hasattr(self, 'dbb_1x1'):
|
466 |
+
out += self.dbb_1x1(inputs)
|
467 |
+
out += self.dbb_avg(inputs)
|
468 |
+
out += self.dbb_1x1_kxk(inputs)
|
469 |
+
return self.nonlinear(out)
|
470 |
+
|
471 |
+
def init_gamma(self, gamma_value):
|
472 |
+
if hasattr(self, "dbb_origin"):
|
473 |
+
torch.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value)
|
474 |
+
if hasattr(self, "dbb_1x1"):
|
475 |
+
torch.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value)
|
476 |
+
if hasattr(self, "dbb_avg"):
|
477 |
+
torch.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value)
|
478 |
+
if hasattr(self, "dbb_1x1_kxk"):
|
479 |
+
torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value)
|
480 |
+
|
481 |
+
def single_init(self):
|
482 |
+
self.init_gamma(0.0)
|
483 |
+
if hasattr(self, "dbb_origin"):
|
484 |
+
torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)
|
485 |
+
|
486 |
+
|
487 |
+
class DetectBackend(nn.Module):
|
488 |
+
def __init__(self, weights='yolov6s.pt', device=None, dnn=True):
|
489 |
+
|
490 |
+
super().__init__()
|
491 |
+
assert isinstance(weights, str) and Path(weights).suffix == '.pt', f'{Path(weights).suffix} format is not supported.'
|
492 |
+
from yolov6.utils.checkpoint import load_checkpoint
|
493 |
+
model = load_checkpoint(weights, map_location=device)
|
494 |
+
stride = int(model.stride.max())
|
495 |
+
self.__dict__.update(locals()) # assign all variables to self
|
496 |
+
|
497 |
+
def forward(self, im, val=False):
|
498 |
+
y = self.model(im)
|
499 |
+
if isinstance(y, np.ndarray):
|
500 |
+
y = torch.tensor(y, device=self.device)
|
501 |
+
return y
|