Spaces:
Build error
Build error
commit
Browse files- yolov6/data/datasets.py +550 -0
yolov6/data/datasets.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
|
4 |
+
import glob
|
5 |
+
import os
|
6 |
+
import os.path as osp
|
7 |
+
import random
|
8 |
+
import json
|
9 |
+
import time
|
10 |
+
import hashlib
|
11 |
+
|
12 |
+
from multiprocessing.pool import Pool
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from PIL import ExifTags, Image, ImageOps
|
18 |
+
from torch.utils.data import Dataset
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
from .data_augment import (
|
22 |
+
augment_hsv,
|
23 |
+
letterbox,
|
24 |
+
mixup,
|
25 |
+
random_affine,
|
26 |
+
mosaic_augmentation,
|
27 |
+
)
|
28 |
+
from yolov6.utils.events import LOGGER
|
29 |
+
|
30 |
+
# Parameters
|
31 |
+
IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
|
32 |
+
# Get orientation exif tag
|
33 |
+
for k, v in ExifTags.TAGS.items():
|
34 |
+
if v == "Orientation":
|
35 |
+
ORIENTATION = k
|
36 |
+
break
|
37 |
+
|
38 |
+
|
39 |
+
class TrainValDataset(Dataset):
|
40 |
+
# YOLOv6 train_loader/val_loader, loads images and labels for training and validation
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
img_dir,
|
44 |
+
img_size=640,
|
45 |
+
batch_size=16,
|
46 |
+
augment=False,
|
47 |
+
hyp=None,
|
48 |
+
rect=False,
|
49 |
+
check_images=False,
|
50 |
+
check_labels=False,
|
51 |
+
stride=32,
|
52 |
+
pad=0.0,
|
53 |
+
rank=-1,
|
54 |
+
data_dict=None,
|
55 |
+
task="train",
|
56 |
+
):
|
57 |
+
assert task.lower() in ("train", "val", "speed"), f"Not supported task: {task}"
|
58 |
+
t1 = time.time()
|
59 |
+
self.__dict__.update(locals())
|
60 |
+
self.main_process = self.rank in (-1, 0)
|
61 |
+
self.task = self.task.capitalize()
|
62 |
+
self.class_names = data_dict["names"]
|
63 |
+
self.img_paths, self.labels = self.get_imgs_labels(self.img_dir)
|
64 |
+
if self.rect:
|
65 |
+
shapes = [self.img_info[p]["shape"] for p in self.img_paths]
|
66 |
+
self.shapes = np.array(shapes, dtype=np.float64)
|
67 |
+
self.batch_indices = np.floor(
|
68 |
+
np.arange(len(shapes)) / self.batch_size
|
69 |
+
).astype(
|
70 |
+
np.int
|
71 |
+
) # batch indices of each image
|
72 |
+
self.sort_files_shapes()
|
73 |
+
t2 = time.time()
|
74 |
+
if self.main_process:
|
75 |
+
LOGGER.info(f"%.1fs for dataset initialization." % (t2 - t1))
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
"""Get the length of dataset"""
|
79 |
+
return len(self.img_paths)
|
80 |
+
|
81 |
+
def __getitem__(self, index):
|
82 |
+
"""Fetching a data sample for a given key.
|
83 |
+
This function applies mosaic and mixup augments during training.
|
84 |
+
During validation, letterbox augment is applied.
|
85 |
+
"""
|
86 |
+
# Mosaic Augmentation
|
87 |
+
if self.augment and random.random() < self.hyp["mosaic"]:
|
88 |
+
img, labels = self.get_mosaic(index)
|
89 |
+
shapes = None
|
90 |
+
|
91 |
+
# MixUp augmentation
|
92 |
+
if random.random() < self.hyp["mixup"]:
|
93 |
+
img_other, labels_other = self.get_mosaic(
|
94 |
+
random.randint(0, len(self.img_paths) - 1)
|
95 |
+
)
|
96 |
+
img, labels = mixup(img, labels, img_other, labels_other)
|
97 |
+
|
98 |
+
else:
|
99 |
+
# Load image
|
100 |
+
img, (h0, w0), (h, w) = self.load_image(index)
|
101 |
+
|
102 |
+
# Letterbox
|
103 |
+
shape = (
|
104 |
+
self.batch_shapes[self.batch_indices[index]]
|
105 |
+
if self.rect
|
106 |
+
else self.img_size
|
107 |
+
) # final letterboxed shape
|
108 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
109 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
110 |
+
|
111 |
+
labels = self.labels[index].copy()
|
112 |
+
if labels.size:
|
113 |
+
w *= ratio
|
114 |
+
h *= ratio
|
115 |
+
# new boxes
|
116 |
+
boxes = np.copy(labels[:, 1:])
|
117 |
+
boxes[:, 0] = (
|
118 |
+
w * (labels[:, 1] - labels[:, 3] / 2) + pad[0]
|
119 |
+
) # top left x
|
120 |
+
boxes[:, 1] = (
|
121 |
+
h * (labels[:, 2] - labels[:, 4] / 2) + pad[1]
|
122 |
+
) # top left y
|
123 |
+
boxes[:, 2] = (
|
124 |
+
w * (labels[:, 1] + labels[:, 3] / 2) + pad[0]
|
125 |
+
) # bottom right x
|
126 |
+
boxes[:, 3] = (
|
127 |
+
h * (labels[:, 2] + labels[:, 4] / 2) + pad[1]
|
128 |
+
) # bottom right y
|
129 |
+
labels[:, 1:] = boxes
|
130 |
+
|
131 |
+
if self.augment:
|
132 |
+
img, labels = random_affine(
|
133 |
+
img,
|
134 |
+
labels,
|
135 |
+
degrees=self.hyp["degrees"],
|
136 |
+
translate=self.hyp["translate"],
|
137 |
+
scale=self.hyp["scale"],
|
138 |
+
shear=self.hyp["shear"],
|
139 |
+
new_shape=(self.img_size, self.img_size),
|
140 |
+
)
|
141 |
+
|
142 |
+
if len(labels):
|
143 |
+
h, w = img.shape[:2]
|
144 |
+
|
145 |
+
labels[:, [1, 3]] = labels[:, [1, 3]].clip(0, w - 1e-3) # x1, x2
|
146 |
+
labels[:, [2, 4]] = labels[:, [2, 4]].clip(0, h - 1e-3) # y1, y2
|
147 |
+
|
148 |
+
boxes = np.copy(labels[:, 1:])
|
149 |
+
boxes[:, 0] = ((labels[:, 1] + labels[:, 3]) / 2) / w # x center
|
150 |
+
boxes[:, 1] = ((labels[:, 2] + labels[:, 4]) / 2) / h # y center
|
151 |
+
boxes[:, 2] = (labels[:, 3] - labels[:, 1]) / w # width
|
152 |
+
boxes[:, 3] = (labels[:, 4] - labels[:, 2]) / h # height
|
153 |
+
labels[:, 1:] = boxes
|
154 |
+
|
155 |
+
if self.augment:
|
156 |
+
img, labels = self.general_augment(img, labels)
|
157 |
+
|
158 |
+
labels_out = torch.zeros((len(labels), 6))
|
159 |
+
if len(labels):
|
160 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
161 |
+
|
162 |
+
# Convert
|
163 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
164 |
+
img = np.ascontiguousarray(img)
|
165 |
+
|
166 |
+
return torch.from_numpy(img), labels_out, self.img_paths[index], shapes
|
167 |
+
|
168 |
+
def load_image(self, index):
|
169 |
+
"""Load image.
|
170 |
+
This function loads image by cv2, resize original image to target shape(img_size) with keeping ratio.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
Image, original shape of image, resized image shape
|
174 |
+
"""
|
175 |
+
path = self.img_paths[index]
|
176 |
+
im = cv2.imread(path)
|
177 |
+
assert im is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
|
178 |
+
|
179 |
+
h0, w0 = im.shape[:2] # origin shape
|
180 |
+
r = self.img_size / max(h0, w0)
|
181 |
+
if r != 1:
|
182 |
+
im = cv2.resize(
|
183 |
+
im,
|
184 |
+
(int(w0 * r), int(h0 * r)),
|
185 |
+
interpolation=cv2.INTER_AREA
|
186 |
+
if r < 1 and not self.augment
|
187 |
+
else cv2.INTER_LINEAR,
|
188 |
+
)
|
189 |
+
return im, (h0, w0), im.shape[:2]
|
190 |
+
|
191 |
+
@staticmethod
|
192 |
+
def collate_fn(batch):
|
193 |
+
"""Merges a list of samples to form a mini-batch of Tensor(s)"""
|
194 |
+
img, label, path, shapes = zip(*batch)
|
195 |
+
for i, l in enumerate(label):
|
196 |
+
l[:, 0] = i # add target image index for build_targets()
|
197 |
+
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
198 |
+
|
199 |
+
def get_imgs_labels(self, img_dir):
|
200 |
+
|
201 |
+
assert osp.exists(img_dir), f"{img_dir} is an invalid directory path!"
|
202 |
+
valid_img_record = osp.join(
|
203 |
+
osp.dirname(img_dir), "." + osp.basename(img_dir) + ".json"
|
204 |
+
)
|
205 |
+
NUM_THREADS = min(8, os.cpu_count())
|
206 |
+
|
207 |
+
img_paths = glob.glob(osp.join(img_dir, "*"), recursive=True)
|
208 |
+
img_paths = sorted(
|
209 |
+
p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS
|
210 |
+
)
|
211 |
+
assert img_paths, f"No images found in {img_dir}."
|
212 |
+
|
213 |
+
img_hash = self.get_hash(img_paths)
|
214 |
+
if osp.exists(valid_img_record):
|
215 |
+
with open(valid_img_record, "r") as f:
|
216 |
+
cache_info = json.load(f)
|
217 |
+
if "image_hash" in cache_info and cache_info["image_hash"] == img_hash:
|
218 |
+
img_info = cache_info["information"]
|
219 |
+
else:
|
220 |
+
self.check_images = True
|
221 |
+
else:
|
222 |
+
self.check_images = True
|
223 |
+
|
224 |
+
# check images
|
225 |
+
if self.check_images and self.main_process:
|
226 |
+
img_info = {}
|
227 |
+
nc, msgs = 0, [] # number corrupt, messages
|
228 |
+
LOGGER.info(
|
229 |
+
f"{self.task}: Checking formats of images with {NUM_THREADS} process(es): "
|
230 |
+
)
|
231 |
+
with Pool(NUM_THREADS) as pool:
|
232 |
+
pbar = tqdm(
|
233 |
+
pool.imap(TrainValDataset.check_image, img_paths),
|
234 |
+
total=len(img_paths),
|
235 |
+
)
|
236 |
+
for img_path, shape_per_img, nc_per_img, msg in pbar:
|
237 |
+
if nc_per_img == 0: # not corrupted
|
238 |
+
img_info[img_path] = {"shape": shape_per_img}
|
239 |
+
nc += nc_per_img
|
240 |
+
if msg:
|
241 |
+
msgs.append(msg)
|
242 |
+
pbar.desc = f"{nc} image(s) corrupted"
|
243 |
+
pbar.close()
|
244 |
+
if msgs:
|
245 |
+
LOGGER.info("\n".join(msgs))
|
246 |
+
|
247 |
+
cache_info = {"information": img_info, "image_hash": img_hash}
|
248 |
+
# save valid image paths.
|
249 |
+
with open(valid_img_record, "w") as f:
|
250 |
+
json.dump(cache_info, f)
|
251 |
+
|
252 |
+
# check and load anns
|
253 |
+
label_dir = osp.join(
|
254 |
+
osp.dirname(osp.dirname(img_dir)), "labels", osp.basename(img_dir)
|
255 |
+
)
|
256 |
+
assert osp.exists(label_dir), f"{label_dir} is an invalid directory path!"
|
257 |
+
|
258 |
+
img_paths = list(img_info.keys())
|
259 |
+
label_paths = sorted(
|
260 |
+
osp.join(label_dir, osp.splitext(osp.basename(p))[0] + ".txt")
|
261 |
+
for p in img_paths
|
262 |
+
)
|
263 |
+
label_hash = self.get_hash(label_paths)
|
264 |
+
if "label_hash" not in cache_info or cache_info["label_hash"] != label_hash:
|
265 |
+
self.check_labels = True
|
266 |
+
|
267 |
+
if self.check_labels:
|
268 |
+
cache_info["label_hash"] = label_hash
|
269 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number corrupt, messages
|
270 |
+
LOGGER.info(
|
271 |
+
f"{self.task}: Checking formats of labels with {NUM_THREADS} process(es): "
|
272 |
+
)
|
273 |
+
with Pool(NUM_THREADS) as pool:
|
274 |
+
pbar = pool.imap(
|
275 |
+
TrainValDataset.check_label_files, zip(img_paths, label_paths)
|
276 |
+
)
|
277 |
+
pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
|
278 |
+
for (
|
279 |
+
img_path,
|
280 |
+
labels_per_file,
|
281 |
+
nc_per_file,
|
282 |
+
nm_per_file,
|
283 |
+
nf_per_file,
|
284 |
+
ne_per_file,
|
285 |
+
msg,
|
286 |
+
) in pbar:
|
287 |
+
if nc_per_file == 0:
|
288 |
+
img_info[img_path]["labels"] = labels_per_file
|
289 |
+
else:
|
290 |
+
img_info.pop(img_path)
|
291 |
+
nc += nc_per_file
|
292 |
+
nm += nm_per_file
|
293 |
+
nf += nf_per_file
|
294 |
+
ne += ne_per_file
|
295 |
+
if msg:
|
296 |
+
msgs.append(msg)
|
297 |
+
if self.main_process:
|
298 |
+
pbar.desc = f"{nf} label(s) found, {nm} label(s) missing, {ne} label(s) empty, {nc} invalid label files"
|
299 |
+
if self.main_process:
|
300 |
+
pbar.close()
|
301 |
+
with open(valid_img_record, "w") as f:
|
302 |
+
json.dump(cache_info, f)
|
303 |
+
if msgs:
|
304 |
+
LOGGER.info("\n".join(msgs))
|
305 |
+
if nf == 0:
|
306 |
+
LOGGER.warning(
|
307 |
+
f"WARNING: No labels found in {osp.dirname(self.img_paths[0])}. "
|
308 |
+
)
|
309 |
+
|
310 |
+
if self.task.lower() == "val":
|
311 |
+
if self.data_dict.get("is_coco", False): # use original json file when evaluating on coco dataset.
|
312 |
+
assert osp.exists(self.data_dict["anno_path"]), "Eval on coco dataset must provide valid path of the annotation file in config file: data/coco.yaml"
|
313 |
+
else:
|
314 |
+
assert (
|
315 |
+
self.class_names
|
316 |
+
), "Class names is required when converting labels to coco format for evaluating."
|
317 |
+
save_dir = osp.join(osp.dirname(osp.dirname(img_dir)), "annotations")
|
318 |
+
if not osp.exists(save_dir):
|
319 |
+
os.mkdir(save_dir)
|
320 |
+
save_path = osp.join(
|
321 |
+
save_dir, "instances_" + osp.basename(img_dir) + ".json"
|
322 |
+
)
|
323 |
+
TrainValDataset.generate_coco_format_labels(
|
324 |
+
img_info, self.class_names, save_path
|
325 |
+
)
|
326 |
+
|
327 |
+
img_paths, labels = list(
|
328 |
+
zip(
|
329 |
+
*[
|
330 |
+
(
|
331 |
+
img_path,
|
332 |
+
np.array(info["labels"], dtype=np.float32)
|
333 |
+
if info["labels"]
|
334 |
+
else np.zeros((0, 5), dtype=np.float32),
|
335 |
+
)
|
336 |
+
for img_path, info in img_info.items()
|
337 |
+
]
|
338 |
+
)
|
339 |
+
)
|
340 |
+
self.img_info = img_info
|
341 |
+
LOGGER.info(
|
342 |
+
f"{self.task}: Final numbers of valid images: {len(img_paths)}/ labels: {len(labels)}. "
|
343 |
+
)
|
344 |
+
return img_paths, labels
|
345 |
+
|
346 |
+
def get_mosaic(self, index):
|
347 |
+
"""Gets images and labels after mosaic augments"""
|
348 |
+
indices = [index] + random.choices(
|
349 |
+
range(0, len(self.img_paths)), k=3
|
350 |
+
) # 3 additional image indices
|
351 |
+
random.shuffle(indices)
|
352 |
+
imgs, hs, ws, labels = [], [], [], []
|
353 |
+
for index in indices:
|
354 |
+
img, _, (h, w) = self.load_image(index)
|
355 |
+
labels_per_img = self.labels[index]
|
356 |
+
imgs.append(img)
|
357 |
+
hs.append(h)
|
358 |
+
ws.append(w)
|
359 |
+
labels.append(labels_per_img)
|
360 |
+
img, labels = mosaic_augmentation(self.img_size, imgs, hs, ws, labels, self.hyp)
|
361 |
+
return img, labels
|
362 |
+
|
363 |
+
def general_augment(self, img, labels):
|
364 |
+
"""Gets images and labels after general augment
|
365 |
+
This function applies hsv, random ud-flip and random lr-flips augments.
|
366 |
+
"""
|
367 |
+
nl = len(labels)
|
368 |
+
|
369 |
+
# HSV color-space
|
370 |
+
augment_hsv(
|
371 |
+
img,
|
372 |
+
hgain=self.hyp["hsv_h"],
|
373 |
+
sgain=self.hyp["hsv_s"],
|
374 |
+
vgain=self.hyp["hsv_v"],
|
375 |
+
)
|
376 |
+
|
377 |
+
# Flip up-down
|
378 |
+
if random.random() < self.hyp["flipud"]:
|
379 |
+
img = np.flipud(img)
|
380 |
+
if nl:
|
381 |
+
labels[:, 2] = 1 - labels[:, 2]
|
382 |
+
|
383 |
+
# Flip left-right
|
384 |
+
if random.random() < self.hyp["fliplr"]:
|
385 |
+
img = np.fliplr(img)
|
386 |
+
if nl:
|
387 |
+
labels[:, 1] = 1 - labels[:, 1]
|
388 |
+
|
389 |
+
return img, labels
|
390 |
+
|
391 |
+
def sort_files_shapes(self):
|
392 |
+
# Sort by aspect ratio
|
393 |
+
batch_num = self.batch_indices[-1] + 1
|
394 |
+
s = self.shapes # wh
|
395 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
396 |
+
irect = ar.argsort()
|
397 |
+
self.img_paths = [self.img_paths[i] for i in irect]
|
398 |
+
self.labels = [self.labels[i] for i in irect]
|
399 |
+
self.shapes = s[irect] # wh
|
400 |
+
ar = ar[irect]
|
401 |
+
|
402 |
+
# Set training image shapes
|
403 |
+
shapes = [[1, 1]] * batch_num
|
404 |
+
for i in range(batch_num):
|
405 |
+
ari = ar[self.batch_indices == i]
|
406 |
+
mini, maxi = ari.min(), ari.max()
|
407 |
+
if maxi < 1:
|
408 |
+
shapes[i] = [maxi, 1]
|
409 |
+
elif mini > 1:
|
410 |
+
shapes[i] = [1, 1 / mini]
|
411 |
+
self.batch_shapes = (
|
412 |
+
np.ceil(np.array(shapes) * self.img_size / self.stride + self.pad).astype(
|
413 |
+
np.int
|
414 |
+
)
|
415 |
+
* self.stride
|
416 |
+
)
|
417 |
+
|
418 |
+
@staticmethod
|
419 |
+
def check_image(im_file):
|
420 |
+
# verify an image.
|
421 |
+
nc, msg = 0, ""
|
422 |
+
try:
|
423 |
+
im = Image.open(im_file)
|
424 |
+
im.verify() # PIL verify
|
425 |
+
shape = im.size # (width, height)
|
426 |
+
im_exif = im._getexif()
|
427 |
+
if im_exif and ORIENTATION in im_exif:
|
428 |
+
rotation = im_exif[ORIENTATION]
|
429 |
+
if rotation in (6, 8):
|
430 |
+
shape = (shape[1], shape[0])
|
431 |
+
|
432 |
+
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
|
433 |
+
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
|
434 |
+
if im.format.lower() in ("jpg", "jpeg"):
|
435 |
+
with open(im_file, "rb") as f:
|
436 |
+
f.seek(-2, 2)
|
437 |
+
if f.read() != b"\xff\xd9": # corrupt JPEG
|
438 |
+
ImageOps.exif_transpose(Image.open(im_file)).save(
|
439 |
+
im_file, "JPEG", subsampling=0, quality=100
|
440 |
+
)
|
441 |
+
msg += f"WARNING: {im_file}: corrupt JPEG restored and saved"
|
442 |
+
return im_file, shape, nc, msg
|
443 |
+
except Exception as e:
|
444 |
+
nc = 1
|
445 |
+
msg = f"WARNING: {im_file}: ignoring corrupt image: {e}"
|
446 |
+
return im_file, None, nc, msg
|
447 |
+
|
448 |
+
@staticmethod
|
449 |
+
def check_label_files(args):
|
450 |
+
img_path, lb_path = args
|
451 |
+
nm, nf, ne, nc, msg = 0, 0, 0, 0, "" # number (missing, found, empty, message
|
452 |
+
try:
|
453 |
+
if osp.exists(lb_path):
|
454 |
+
nf = 1 # label found
|
455 |
+
with open(lb_path, "r") as f:
|
456 |
+
labels = [
|
457 |
+
x.split() for x in f.read().strip().splitlines() if len(x)
|
458 |
+
]
|
459 |
+
labels = np.array(labels, dtype=np.float32)
|
460 |
+
if len(labels):
|
461 |
+
assert all(
|
462 |
+
len(l) == 5 for l in labels
|
463 |
+
), f"{lb_path}: wrong label format."
|
464 |
+
assert (
|
465 |
+
labels >= 0
|
466 |
+
).all(), f"{lb_path}: Label values error: all values in label file must > 0"
|
467 |
+
assert (
|
468 |
+
labels[:, 1:] <= 1
|
469 |
+
).all(), f"{lb_path}: Label values error: all coordinates must be normalized"
|
470 |
+
|
471 |
+
_, indices = np.unique(labels, axis=0, return_index=True)
|
472 |
+
if len(indices) < len(labels): # duplicate row check
|
473 |
+
labels = labels[indices] # remove duplicates
|
474 |
+
msg += f"WARNING: {lb_path}: {len(labels) - len(indices)} duplicate labels removed"
|
475 |
+
labels = labels.tolist()
|
476 |
+
else:
|
477 |
+
ne = 1 # label empty
|
478 |
+
labels = []
|
479 |
+
else:
|
480 |
+
nm = 1 # label missing
|
481 |
+
labels = []
|
482 |
+
|
483 |
+
return img_path, labels, nc, nm, nf, ne, msg
|
484 |
+
except Exception as e:
|
485 |
+
nc = 1
|
486 |
+
msg = f"WARNING: {lb_path}: ignoring invalid labels: {e}"
|
487 |
+
return img_path, None, nc, nm, nf, ne, msg
|
488 |
+
|
489 |
+
@staticmethod
|
490 |
+
def generate_coco_format_labels(img_info, class_names, save_path):
|
491 |
+
# for evaluation with pycocotools
|
492 |
+
dataset = {"categories": [], "annotations": [], "images": []}
|
493 |
+
for i, class_name in enumerate(class_names):
|
494 |
+
dataset["categories"].append(
|
495 |
+
{"id": i, "name": class_name, "supercategory": ""}
|
496 |
+
)
|
497 |
+
|
498 |
+
ann_id = 0
|
499 |
+
LOGGER.info(f"Convert to COCO format")
|
500 |
+
for i, (img_path, info) in enumerate(tqdm(img_info.items())):
|
501 |
+
labels = info["labels"] if info["labels"] else []
|
502 |
+
img_id = osp.splitext(osp.basename(img_path))[0]
|
503 |
+
img_id = int(img_id) if img_id.isnumeric() else img_id
|
504 |
+
img_w, img_h = info["shape"]
|
505 |
+
dataset["images"].append(
|
506 |
+
{
|
507 |
+
"file_name": os.path.basename(img_path),
|
508 |
+
"id": img_id,
|
509 |
+
"width": img_w,
|
510 |
+
"height": img_h,
|
511 |
+
}
|
512 |
+
)
|
513 |
+
if labels:
|
514 |
+
for label in labels:
|
515 |
+
c, x, y, w, h = label[:5]
|
516 |
+
# convert x,y,w,h to x1,y1,x2,y2
|
517 |
+
x1 = (x - w / 2) * img_w
|
518 |
+
y1 = (y - h / 2) * img_h
|
519 |
+
x2 = (x + w / 2) * img_w
|
520 |
+
y2 = (y + h / 2) * img_h
|
521 |
+
# cls_id starts from 0
|
522 |
+
cls_id = int(c)
|
523 |
+
w = max(0, x2 - x1)
|
524 |
+
h = max(0, y2 - y1)
|
525 |
+
dataset["annotations"].append(
|
526 |
+
{
|
527 |
+
"area": h * w,
|
528 |
+
"bbox": [x1, y1, w, h],
|
529 |
+
"category_id": cls_id,
|
530 |
+
"id": ann_id,
|
531 |
+
"image_id": img_id,
|
532 |
+
"iscrowd": 0,
|
533 |
+
# mask
|
534 |
+
"segmentation": [],
|
535 |
+
}
|
536 |
+
)
|
537 |
+
ann_id += 1
|
538 |
+
|
539 |
+
with open(save_path, "w") as f:
|
540 |
+
json.dump(dataset, f)
|
541 |
+
LOGGER.info(
|
542 |
+
f"Convert to COCO format finished. Resutls saved in {save_path}"
|
543 |
+
)
|
544 |
+
|
545 |
+
@staticmethod
|
546 |
+
def get_hash(paths):
|
547 |
+
"""Get the hash value of paths"""
|
548 |
+
assert isinstance(paths, list), "Only support list currently."
|
549 |
+
h = hashlib.md5("".join(paths).encode())
|
550 |
+
return h.hexdigest()
|