import torch import numpy as np import torch.nn.functional as F def transI_fusebn(kernel, bn): gamma = bn.weight std = (bn.running_var + bn.eps).sqrt() return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std def transII_addbranch(kernels, biases): return sum(kernels), sum(biases) def transIII_1x1_kxk(k1, b1, k2, b2, groups): if groups == 1: k = F.conv2d(k2, k1.permute(1, 0, 2, 3)) # b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3)) else: k_slices = [] b_slices = [] k1_T = k1.permute(1, 0, 2, 3) k1_group_width = k1.size(0) // groups k2_group_width = k2.size(0) // groups for g in range(groups): k1_T_slice = k1_T[:, g*k1_group_width:(g+1)*k1_group_width, :, :] k2_slice = k2[g*k2_group_width:(g+1)*k2_group_width, :, :, :] k_slices.append(F.conv2d(k2_slice, k1_T_slice)) b_slices.append((k2_slice * b1[g * k1_group_width:(g+1) * k1_group_width].reshape(1, -1, 1, 1)).sum((1, 2, 3))) k, b_hat = transIV_depthconcat(k_slices, b_slices) return k, b_hat + b2 def transIV_depthconcat(kernels, biases): return torch.cat(kernels, dim=0), torch.cat(biases) def transV_avg(channels, kernel_size, groups): input_dim = channels // groups k = torch.zeros((channels, input_dim, kernel_size, kernel_size)) k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2 return k # This has not been tested with non-square kernels (kernel.size(2) != kernel.size(3)) nor even-size kernels def transVI_multiscale(kernel, target_kernel_size): H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2 W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2 return F.pad(kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad])