Spaces:
Running
Running
format utils.py
Browse files
utils.py
CHANGED
@@ -11,6 +11,7 @@ import datetime
|
|
11 |
import glob
|
12 |
from dataclasses import dataclass
|
13 |
from typing import List, Tuple, Dict
|
|
|
14 |
# clone / pull the lmeh eval data
|
15 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
16 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
@@ -18,67 +19,74 @@ LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
18 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
19 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
20 |
BENCH_TO_NAME = {
|
21 |
-
"arc_challenge":"ARC (25-shot) ⬆️",
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
}
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if model_name in LLAMAS:
|
29 |
model = model_name.split("/")[1]
|
30 |
return f'<a target="_blank" href="https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model}</a>'
|
31 |
-
|
32 |
if model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
33 |
link = "https://huggingface.co/" + "CarperAI/stable-vicuna-13b-delta"
|
34 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">stable-vicuna-13b</a>'
|
35 |
-
|
36 |
if model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
37 |
link = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
38 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">alpaca-13b</a>'
|
39 |
|
40 |
# remove user from model name
|
41 |
-
#model_name_show = ' '.join(model_name.split('/')[1:])
|
42 |
|
43 |
link = "https://huggingface.co/" + model_name
|
44 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
45 |
|
|
|
46 |
@dataclass
|
47 |
class EvalResult:
|
48 |
-
eval_name
|
49 |
-
org
|
50 |
-
model
|
51 |
-
revision
|
52 |
-
is_8bit
|
53 |
-
results
|
54 |
-
|
55 |
def to_dict(self):
|
56 |
-
|
57 |
if self.org is not None:
|
58 |
-
base_model =f"{self.org}/{self.model}"
|
59 |
else:
|
60 |
-
base_model =f"{self.model}"
|
61 |
data_dict = {}
|
62 |
-
|
63 |
data_dict["eval_name"] = self.eval_name
|
64 |
data_dict["8bit"] = self.is_8bit
|
65 |
data_dict["Model"] = make_clickable_model(base_model)
|
66 |
data_dict["Revision"] = self.revision
|
67 |
-
data_dict["Average ⬆️"] = round(
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
for benchmark in BENCHMARKS:
|
71 |
if not benchmark in self.results.keys():
|
72 |
self.results[benchmark] = None
|
73 |
-
|
74 |
-
for k,v in BENCH_TO_NAME.items():
|
75 |
data_dict[v] = self.results[k]
|
76 |
-
|
77 |
return data_dict
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
83 |
with open(json_filepath) as fp:
|
84 |
data = json.load(fp)
|
@@ -88,49 +96,60 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
|
88 |
model = path_split[-4]
|
89 |
is_8bit = path_split[-2] == "8bit"
|
90 |
revision = path_split[-3]
|
91 |
-
if len(path_split)== 7:
|
92 |
# handles gpt2 type models that don't have an org
|
93 |
result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
94 |
else:
|
95 |
-
result_key =
|
|
|
|
|
96 |
org = path_split[-5]
|
97 |
-
|
98 |
eval_result = None
|
99 |
-
for benchmark, metric
|
100 |
if benchmark in json_filepath:
|
101 |
accs = np.array([v[metric] for k, v in data["results"].items()])
|
102 |
-
mean_acc = round(np.mean(accs)*100.0,1)
|
103 |
-
eval_result = EvalResult(
|
104 |
-
|
|
|
|
|
105 |
return result_key, eval_result
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
def get_eval_results(is_public) -> List[EvalResult]:
|
111 |
-
json_filepaths = glob.glob(
|
|
|
|
|
112 |
if not is_public:
|
113 |
-
json_filepaths += glob.glob(
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
eval_results = {}
|
117 |
-
|
118 |
for json_filepath in json_filepaths:
|
119 |
result_key, eval_result = parse_eval_result(json_filepath)
|
120 |
if result_key in eval_results.keys():
|
121 |
eval_results[result_key].results.update(eval_result.results)
|
122 |
else:
|
123 |
eval_results[result_key] = eval_result
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
return eval_results
|
129 |
-
|
|
|
130 |
def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
131 |
eval_results = get_eval_results(is_public)
|
132 |
-
|
133 |
return [e.to_dict() for e in eval_results]
|
134 |
|
|
|
135 |
eval_results_dict = get_eval_results_dicts()
|
136 |
# print(eval_results_dict)
|
|
|
11 |
import glob
|
12 |
from dataclasses import dataclass
|
13 |
from typing import List, Tuple, Dict
|
14 |
+
|
15 |
# clone / pull the lmeh eval data
|
16 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
17 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
|
19 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
20 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
21 |
BENCH_TO_NAME = {
|
22 |
+
"arc_challenge": "ARC (25-shot) ⬆️",
|
23 |
+
"hellaswag": "HellaSwag (10-shot) ⬆️",
|
24 |
+
"hendrycks": "MMLU (5-shot) ⬆️",
|
25 |
+
"truthfulqa_mc": "TruthfulQA (0-shot) ⬆️",
|
26 |
}
|
27 |
+
|
28 |
+
|
29 |
+
def make_clickable_model(model_name):
|
30 |
+
LLAMAS = [
|
31 |
+
"huggingface/llama-7b",
|
32 |
+
"huggingface/llama-13b",
|
33 |
+
"huggingface/llama-30b",
|
34 |
+
"huggingface/llama-65b",
|
35 |
+
]
|
36 |
if model_name in LLAMAS:
|
37 |
model = model_name.split("/")[1]
|
38 |
return f'<a target="_blank" href="https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model}</a>'
|
39 |
+
|
40 |
if model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
41 |
link = "https://huggingface.co/" + "CarperAI/stable-vicuna-13b-delta"
|
42 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">stable-vicuna-13b</a>'
|
43 |
+
|
44 |
if model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
45 |
link = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
46 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">alpaca-13b</a>'
|
47 |
|
48 |
# remove user from model name
|
49 |
+
# model_name_show = ' '.join(model_name.split('/')[1:])
|
50 |
|
51 |
link = "https://huggingface.co/" + model_name
|
52 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
53 |
|
54 |
+
|
55 |
@dataclass
|
56 |
class EvalResult:
|
57 |
+
eval_name: str
|
58 |
+
org: str
|
59 |
+
model: str
|
60 |
+
revision: str
|
61 |
+
is_8bit: bool
|
62 |
+
results: dict
|
63 |
+
|
64 |
def to_dict(self):
|
|
|
65 |
if self.org is not None:
|
66 |
+
base_model = f"{self.org}/{self.model}"
|
67 |
else:
|
68 |
+
base_model = f"{self.model}"
|
69 |
data_dict = {}
|
70 |
+
|
71 |
data_dict["eval_name"] = self.eval_name
|
72 |
data_dict["8bit"] = self.is_8bit
|
73 |
data_dict["Model"] = make_clickable_model(base_model)
|
74 |
data_dict["Revision"] = self.revision
|
75 |
+
data_dict["Average ⬆️"] = round(
|
76 |
+
sum([v for k, v in self.results.items()]) / 4.0, 1
|
77 |
+
)
|
78 |
+
# data_dict["# params"] = get_n_params(base_model)
|
79 |
+
|
80 |
for benchmark in BENCHMARKS:
|
81 |
if not benchmark in self.results.keys():
|
82 |
self.results[benchmark] = None
|
83 |
+
|
84 |
+
for k, v in BENCH_TO_NAME.items():
|
85 |
data_dict[v] = self.results[k]
|
86 |
+
|
87 |
return data_dict
|
88 |
+
|
89 |
+
|
|
|
|
|
90 |
def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
91 |
with open(json_filepath) as fp:
|
92 |
data = json.load(fp)
|
|
|
96 |
model = path_split[-4]
|
97 |
is_8bit = path_split[-2] == "8bit"
|
98 |
revision = path_split[-3]
|
99 |
+
if len(path_split) == 7:
|
100 |
# handles gpt2 type models that don't have an org
|
101 |
result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
102 |
else:
|
103 |
+
result_key = (
|
104 |
+
f"{path_split[-5]}_{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
105 |
+
)
|
106 |
org = path_split[-5]
|
107 |
+
|
108 |
eval_result = None
|
109 |
+
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
110 |
if benchmark in json_filepath:
|
111 |
accs = np.array([v[metric] for k, v in data["results"].items()])
|
112 |
+
mean_acc = round(np.mean(accs) * 100.0, 1)
|
113 |
+
eval_result = EvalResult(
|
114 |
+
result_key, org, model, revision, is_8bit, {benchmark: mean_acc}
|
115 |
+
)
|
116 |
+
|
117 |
return result_key, eval_result
|
118 |
+
|
119 |
+
|
|
|
|
|
120 |
def get_eval_results(is_public) -> List[EvalResult]:
|
121 |
+
json_filepaths = glob.glob(
|
122 |
+
"evals/eval_results/public/**/16bit/*.json", recursive=True
|
123 |
+
)
|
124 |
if not is_public:
|
125 |
+
json_filepaths += glob.glob(
|
126 |
+
"evals/eval_results/private/**/*.json", recursive=True
|
127 |
+
)
|
128 |
+
json_filepaths += glob.glob(
|
129 |
+
"evals/eval_results/private/**/*.json", recursive=True
|
130 |
+
)
|
131 |
+
json_filepaths += glob.glob(
|
132 |
+
"evals/eval_results/public/**/8bit/*.json", recursive=True
|
133 |
+
) # include the 8bit evals of public models
|
134 |
eval_results = {}
|
135 |
+
|
136 |
for json_filepath in json_filepaths:
|
137 |
result_key, eval_result = parse_eval_result(json_filepath)
|
138 |
if result_key in eval_results.keys():
|
139 |
eval_results[result_key].results.update(eval_result.results)
|
140 |
else:
|
141 |
eval_results[result_key] = eval_result
|
142 |
+
|
143 |
+
eval_results = [v for k, v in eval_results.items()]
|
144 |
+
|
|
|
145 |
return eval_results
|
146 |
+
|
147 |
+
|
148 |
def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
149 |
eval_results = get_eval_results(is_public)
|
150 |
+
|
151 |
return [e.to_dict() for e in eval_results]
|
152 |
|
153 |
+
|
154 |
eval_results_dict = get_eval_results_dicts()
|
155 |
# print(eval_results_dict)
|