File size: 3,054 Bytes
662636f
23752c4
 
6e98be9
 
6110da3
313893f
23752c4
 
6e98be9
5f16603
8e45f12
400ddf8
bfb2729
 
 
6110da3
bfb2729
 
 
 
991d32c
 
1b40fc5
991d32c
 
9b49413
eb0b5b4
6e98be9
 
 
 
 
dfb1734
5f4e1e4
6110da3
dfb1734
 
f464384
 
f071ce0
 
 
 
 
b916535
f071ce0
 
 
 
8e45f12
 
 
 
 
518f1a5
759ea45
518f1a5
759ea45
518f1a5
759ea45
518f1a5
759ea45
518f1a5
759ea45
518f1a5
759ea45
518f1a5
759ea45
518f1a5
8e45f12
 
bfb2729
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification

pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
imgpipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
emopipe = pipeline("text-classification", model="michellejieli/emotion_text_classifier")

st.title("NLP APP")
option = st.sidebar.selectbox(
    "Choose a task",
    ("Summarization", "Age Detection", "Emotion Detection", "Image Classification")
)
if option == "Summarization":
    st.title("Text Summarization")
    text = st.text_area("Enter text to summarize")
    if st.button("Summarize"):
        if text:
            st.write("Summary:", pipe(text)[0]["summary_text"])
        else:
            st.write("Please enter text to summarize.")
elif option == "Age Detection":
    st.title("Welcome to age detection")

    uploaded_files = st.file_uploader("Choose a image file",type="jpg")

    if uploaded_files is not None:
        Image=Image.open(uploaded_files)

        st.write("Detected age is ",agepipe(Image)[0]["label"])
elif option == "Image Classification":
    st.title("Welcome to object detection")

    uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
    text = st.text_area("Enter possible class names (comma-separated)")
    if st.button("Submit"):
        if uploaded_file is not None and text:
            candidate_labels = [t.strip() for t in text.split(',')]
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)
            classification_result = imgpipe(image, candidate_labels=candidate_labels)
            for result in classification_result:
                st.write(f"Label: {result['label']}, Score: {result['score']}")
        else:
            st.write("Please upload an image file and enter class names.")
elif option == "Emotion Detection":
    st.title("Detect your emotion")
    text=st.text_area("Enter your text")
    if st.button("Submit"):
        if text:
            emotion=emopipe(text)[0]["label"]
            if emotion == "sadness":
                    st.write("Emotion : ",emotion,"😒")
            elif emotion == "joy":
                    st.write("Emotion : ",emotion,"πŸ˜ƒ")
            elif emotion == "fear":
                    st.write("Emotion : ",emotion,"😨")
            elif emotion == "anger":
                    st.write("Emotion : ",emotion,"😑")
            elif emotion == "neutral":
                    st.write("Emotion : ",emotion,"😐")
            elif emotion == "disgust":
                    st.write("Emotion : ",emotion,"🀒")
            elif emotion == "surprise":
                    st.write("Emotion : ",emotion,"😲")
        else:
            st.write("Please enter text.")

else:
    st.title("None")