Spaces:
Sleeping
Sleeping
import streamlit as st | |
import transformers | |
from transformers import pipeline | |
import PIL | |
from PIL import Image | |
import requests | |
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification | |
pipe = pipeline("summarization", model="google/pegasus-xsum") | |
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection") | |
imgpipe = pipeline("zero-shot-image-classification", model="google/siglip-so400m-patch14-384") | |
st.title("NLP APP") | |
option = st.sidebar.selectbox( | |
"Choose a task", | |
("Summarization", "Age Detection", "Emotion Detection", "Image Classification") | |
) | |
if option == "Summarization": | |
st.title("Text Summarization") | |
text = st.text_area("Enter text to summarize") | |
if st.button("Summarize"): | |
if text: | |
st.write("Summary:", pipe(text)[0]["summary_text"]) | |
else: | |
st.write("Please enter text to summarize.") | |
elif option == "Age Detection": | |
st.title("Welcome to age detection") | |
uploaded_files = st.file_uploader("Choose a image file",type="jpg") | |
if uploaded_files is not None: | |
Image=Image.open(uploaded_files) | |
st.write(agepipe(Image)[0]["label"]) | |
elif option == "Image Classification": | |
st.title("Welcome to object detection") | |
uploaded_files = st.file_uploader("Choose a image file",type=["jpg","jpeg"]) | |
text=st.text_area("Enter possible class names(comma separated") | |
candidate_lables=[t.strip() for t in text.split(',')] | |
if uploaded_files is not None: | |
Image=Image.open(uploaded_files) | |
outputs = imgpipe(uploaded_files,candidate_lables) | |
st.write(output["label"]) | |
else: | |
st.title("None") |