Pavani2704's picture
Update app.py
313893f verified
raw
history blame
1.68 kB
import streamlit as st
import transformers
from transformers import pipeline
import PIL
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
pipe = pipeline("summarization", model="google/pegasus-xsum")
agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection")
imgpipe = pipeline("zero-shot-image-classification", model="google/siglip-so400m-patch14-384")
st.title("NLP APP")
option = st.sidebar.selectbox(
"Choose a task",
("Summarization", "Age Detection", "Emotion Detection", "Image Classification")
)
if option == "Summarization":
st.title("Text Summarization")
text = st.text_area("Enter text to summarize")
if st.button("Summarize"):
if text:
st.write("Summary:", pipe(text)[0]["summary_text"])
else:
st.write("Please enter text to summarize.")
elif option == "Age Detection":
st.title("Welcome to age detection")
uploaded_files = st.file_uploader("Choose a image file",type="jpg")
if uploaded_files is not None:
Image=Image.open(uploaded_files)
st.write(agepipe(Image)[0]["label"])
elif option == "Image Classification":
st.title("Welcome to object detection")
uploaded_files = st.file_uploader("Choose a image file",type=["jpg","jpeg"])
text=st.text_area("Enter possible class names(comma separated")
candidate_lables=[t.strip() for t in text.split(',')]
if uploaded_files is not None:
Image=Image.open(uploaded_files)
outputs = imgpipe(uploaded_files,candidate_lables)
st.write(output["label"])
else:
st.title("None")