Spaces:
Runtime error
Runtime error
File size: 6,020 Bytes
b534665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import sys
import time
from pathlib import Path
import cv2
from openvino.inference_engine import IECore
import matplotlib.cm
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
from PIL import Image
import tempfile
DEMO_IMAGE = 'dog-new.jpg'
DEMO_VIDEO = 'demo.mp4'
@st.cache
def normalize_minmax(data):
return (data - data.min()) / (data.max() - data.min())
@st.cache
def convert_result_to_image(result, colormap="inferno"):
cmap = matplotlib.cm.get_cmap(colormap)
result = result.squeeze(0)
result = normalize_minmax(result)
result = cmap(result)[:, :, :3] * 255
result = result.astype(np.uint8)
return result
@st.cache
def to_rgb(image_data) -> np.ndarray:
return cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)
st.title("Depth Estimation App")
st.sidebar.title('Depth Estimation')
st.sidebar.subheader('Parameters')
DEVICE = "CPU"
MODEL_FILE = "models/MiDaS_small.xml"
model_xml_path = Path(MODEL_FILE)
ie = IECore()
net = ie.read_network(model=model_xml_path, weights=model_xml_path.with_suffix(".bin"))
exec_net = ie.load_network(network=net, device_name=DEVICE)
input_key = list(exec_net.input_info)[0]
output_key = list(exec_net.outputs.keys())[0]
network_input_shape = exec_net.input_info[input_key].tensor_desc.dims
network_image_height, network_image_width = network_input_shape[2:]
app_mode = st.sidebar.selectbox('Choose the App mode',
['Run on Image','Run on Video'],index = 0)
if app_mode == "Run on Image":
st.markdown('Running on Image')
st.sidebar.text('Params for Image')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -400px;
}
</style>
""",
unsafe_allow_html=True,
)
img_file_buffer = st.sidebar.file_uploader("Upload an image", type=[ "jpg", "jpeg",'png'])
if img_file_buffer is not None:
image = np.array(Image.open(img_file_buffer))
else:
demo_image = DEMO_IMAGE
image = np.array(Image.open(demo_image))
st.sidebar.text('Original Image')
st.sidebar.image(image)
resized_image = cv2.resize(src=image, dsize=(network_image_height, network_image_width))
# reshape image to network input shape NCHW
input_image = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)
result = exec_net.infer(inputs={input_key: input_image})[output_key]
# convert network result of disparity map to an image that shows
# distance as colors
result_image = convert_result_to_image(result=result)
# resize back to original image shape. cv2.resize expects shape
# in (width, height), [::-1] reverses the (height, width) shape to match this.
result_image = cv2.resize(result_image, image.shape[:2][::-1])
st.subheader('Output Image')
st.image(result_image,use_column_width= True)
if app_mode =='Run on Video':
st.markdown('Running on Video')
use_webcam = st.sidebar.button('Use Webcam')
video_file_buffer = st.sidebar.file_uploader("Upload a video", type=[ "mp4", "mov",'avi','asf', 'm4v' ])
tfflie = tempfile.NamedTemporaryFile(delete=False)
stop_button = st.sidebar.button('Stop Processing')
if stop_button:
st.stop()
if not video_file_buffer:
if use_webcam:
vid = cv2.VideoCapture(0)
else:
vid = cv2.VideoCapture(DEMO_VIDEO)
tfflie.name = DEMO_VIDEO
else:
tfflie.write(video_file_buffer.read())
vid = cv2.VideoCapture(tfflie.name)
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(vid.get(cv2.CAP_PROP_FPS))#codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
codec = cv2.VideoWriter_fourcc('X','V','I','D')
out = cv2.VideoWriter('output_depth.mp4', codec, fps, (width, height))
start_time = time.perf_counter()
total_inference_duration = 0
stframe = st.empty()
SCALE_OUTPUT = 1
st.markdown("**Frame Rate**")
kpi1_text = st.markdown("0")
save_video = st.checkbox('Save video')
while vid.isOpened():
ret, image = vid.read()
new_time = time.time()
input_video_frame_height, input_video_frame_width = image.shape[:2]
target_frame_height = int(input_video_frame_height * SCALE_OUTPUT)
target_frame_width = int(input_video_frame_width * SCALE_OUTPUT)
if not ret:
vid.release()
break
resized_image = cv2.resize(src=image, dsize=(network_image_height, network_image_width))
# reshape image to network input shape NCHW
input_image = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)
inference_start_time = time.perf_counter()
result = exec_net.infer(inputs={input_key: input_image})[output_key]
inference_stop_time = time.perf_counter()
inference_duration = inference_stop_time - inference_start_time
total_inference_duration += inference_duration
result_frame = to_rgb(convert_result_to_image(result))
# Resize image and result to target frame shape
result_frame = cv2.resize(result_frame, (target_frame_width, target_frame_height))
image = cv2.resize(image, (target_frame_width, target_frame_height))
# Put image and result side by side
stacked_frame = np.vstack((image, result_frame))
if save_video:
out.write(stacked_frame)
stframe.image(stacked_frame,channels = 'BGR',use_column_width=True)
fps = 1.0/(time.time() - new_time)
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{'{:.1f}'.format(fps)}</h1>", unsafe_allow_html=True)
vid.release()
out.release()
cv2.destroyAllWindows()
st.success('Video is Processed')
st.stop()
|