File size: 6,020 Bytes
b534665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import sys
import time
from pathlib import Path

import cv2
from openvino.inference_engine import IECore
import matplotlib.cm
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
from PIL import Image
import tempfile


DEMO_IMAGE = 'dog-new.jpg'

DEMO_VIDEO = 'demo.mp4'


@st.cache
def normalize_minmax(data):
   
    return (data - data.min()) / (data.max() - data.min())

@st.cache
def convert_result_to_image(result, colormap="inferno"):
    
    cmap = matplotlib.cm.get_cmap(colormap)
    result = result.squeeze(0)
    result = normalize_minmax(result)
    result = cmap(result)[:, :, :3] * 255
    result = result.astype(np.uint8)
    return result

@st.cache
def to_rgb(image_data) -> np.ndarray:
    
    return cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)


st.title("Depth Estimation App")
st.sidebar.title('Depth Estimation')
st.sidebar.subheader('Parameters')

DEVICE = "CPU"
MODEL_FILE = "models/MiDaS_small.xml"

model_xml_path = Path(MODEL_FILE)


ie = IECore()
net = ie.read_network(model=model_xml_path, weights=model_xml_path.with_suffix(".bin"))
exec_net = ie.load_network(network=net, device_name=DEVICE)

input_key = list(exec_net.input_info)[0]
output_key = list(exec_net.outputs.keys())[0]

network_input_shape = exec_net.input_info[input_key].tensor_desc.dims
network_image_height, network_image_width = network_input_shape[2:]


app_mode = st.sidebar.selectbox('Choose the App mode',
['Run on Image','Run on Video'],index = 0)


if app_mode == "Run on Image":


    st.markdown('Running on Image')

    st.sidebar.text('Params for Image')
    st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -400px;
    }
    </style>
    """,
    unsafe_allow_html=True,
    )

    img_file_buffer = st.sidebar.file_uploader("Upload an image", type=[ "jpg", "jpeg",'png'])

    if img_file_buffer is not None:
        image = np.array(Image.open(img_file_buffer))

    else:
        demo_image = DEMO_IMAGE
        image = np.array(Image.open(demo_image))

    st.sidebar.text('Original Image')
    st.sidebar.image(image)
    resized_image = cv2.resize(src=image, dsize=(network_image_height, network_image_width))
    # reshape image to network input shape NCHW
    input_image = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)


    result = exec_net.infer(inputs={input_key: input_image})[output_key]
    # convert network result of disparity map to an image that shows
    # distance as colors
    result_image = convert_result_to_image(result=result)
    # resize back to original image shape. cv2.resize expects shape
    # in (width, height), [::-1] reverses the (height, width) shape to match this.
    result_image = cv2.resize(result_image, image.shape[:2][::-1])


    st.subheader('Output Image')

    st.image(result_image,use_column_width= True)

if app_mode =='Run on Video':

    st.markdown('Running on Video')

    use_webcam = st.sidebar.button('Use Webcam')

    video_file_buffer = st.sidebar.file_uploader("Upload a video", type=[ "mp4", "mov",'avi','asf', 'm4v' ])

    tfflie = tempfile.NamedTemporaryFile(delete=False)

    stop_button = st.sidebar.button('Stop Processing')

    if stop_button:
        st.stop()



    if not video_file_buffer:
        if use_webcam:
            vid = cv2.VideoCapture(0)
            
        else:
            vid = cv2.VideoCapture(DEMO_VIDEO)
            tfflie.name = DEMO_VIDEO
    

        
    else:
        tfflie.write(video_file_buffer.read())
        vid = cv2.VideoCapture(tfflie.name)





    

    width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(vid.get(cv2.CAP_PROP_FPS))#codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
    codec = cv2.VideoWriter_fourcc('X','V','I','D')
    out = cv2.VideoWriter('output_depth.mp4', codec, fps, (width, height))

    start_time = time.perf_counter()
    total_inference_duration = 0
    stframe = st.empty()
    SCALE_OUTPUT = 1
    st.markdown("**Frame Rate**")
    kpi1_text = st.markdown("0")
    save_video = st.checkbox('Save video')

    while vid.isOpened():
        ret, image = vid.read()
        new_time = time.time()
        input_video_frame_height, input_video_frame_width = image.shape[:2]
        target_frame_height = int(input_video_frame_height * SCALE_OUTPUT)
        target_frame_width = int(input_video_frame_width * SCALE_OUTPUT)


        if not ret:
            vid.release()
            break
        resized_image = cv2.resize(src=image, dsize=(network_image_height, network_image_width))
        # reshape image to network input shape NCHW
        input_image = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)

        inference_start_time = time.perf_counter()
        result = exec_net.infer(inputs={input_key: input_image})[output_key]
        inference_stop_time = time.perf_counter()
        inference_duration = inference_stop_time - inference_start_time
        total_inference_duration += inference_duration


        result_frame = to_rgb(convert_result_to_image(result))
        # Resize image and result to target frame shape
        result_frame = cv2.resize(result_frame, (target_frame_width, target_frame_height))
        image = cv2.resize(image, (target_frame_width, target_frame_height))
        # Put image and result side by side
        stacked_frame = np.vstack((image, result_frame))
        if save_video:
            out.write(stacked_frame)

        stframe.image(stacked_frame,channels = 'BGR',use_column_width=True)
        fps = 1.0/(time.time() - new_time)
        kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{'{:.1f}'.format(fps)}</h1>", unsafe_allow_html=True)

        

    vid.release()
    out.release()
    cv2.destroyAllWindows()
    st.success('Video is Processed')
    st.stop()