File size: 6,378 Bytes
356a5f4 765540e 356a5f4 765540e 356a5f4 765540e 356a5f4 765540e 356a5f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
# List of available models
list_models = [
"SDXL 1.0", "SD 1.5", "OpenJourney", "Anything V4.0",
"Disney Pixar Cartoon", "Pixel Art XL", "Dalle 3 XL",
"Midjourney V4 XL", "Open Diffusion V1", "SSD 1B",
"Segmind Vega", "Animagine XL-2.0", "Animagine XL-3.0",
"OpenDalle", "OpenDalle V1.1", "PlaygroundV2 1024px aesthetic",
]
# Function to generate images from text
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None):
if current_model == "SD 1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL 1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything V4.0":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney Pixar Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel Art XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle 3 XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney V4 XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
elif current_model == "Open Diffusion V1":
API_URL = "https://api-inference.huggingface.co/models/openskyml/open-diffusion-v1"
elif current_model == "SSD 1B":
API_URL = "https://api-inference.huggingface.co/models/segmind/SSD-1B"
elif current_model == "Segmind Vega":
API_URL = "https://api-inference.huggingface.co/models/segmind/Segmind-Vega"
elif current_model == "Animagine XL-2.0":
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
elif current_model == "Animagine XL-3.0":
API_URL = "https://api-inference.huggingface.co/models/cagliostrolab/animagine-xl-3.0"
elif current_model == "OpenDalle":
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalle"
elif current_model == "OpenDalle V1.1":
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1"
elif current_model == "PlaygroundV2 1024px aesthetic":
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
# Function to read CSS from file
def read_css_from_file(filename):
with open(filename, "r") as file:
return file.read()
# Read CSS from file
css = read_css_from_file("style.css")
PTI_SD_DESCRIPTION = '''
<div id="content_align">
<span style="color:darkred;font-size:32px;font-weight:bold">
Stable Diffusion Models Image Generation
</span>
</div>
<div id="content_align">
<span style="color:blue;font-size:16px;font-weight:bold">
Generate images directly from text prompts (no parameter tuning required)
</span>
</div>
<div id="content_align" style="margin-top: 10px;">
</div>
'''
# Creating Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown(PTI_SD_DESCRIPTION)
with gr.Row():
with gr.Column():
current_model = gr.Dropdown(label="Select Model", choices=list_models, value=list_models[1])
text_prompt = gr.Textbox(label="Input Prompt", placeholder="Example: woman in the street ", lines=2)
with gr.Column():
negative_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="Example: blurry, unfocused", lines=2)
image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style")
generate_button = gr.Button("Generate Image", variant='primary')
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output")
generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
# Launch the app
demo.launch()
|