Spaces:
Running
Running
import gradio as gr | |
from random import randint | |
from all_models import models | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
m = gr.load(f'models/{model}') | |
except Exception as error: | |
m = gr.Interface(lambda txt: None, ['text'], ['image']) | |
models_load.update({model: m}) | |
load_fn(models) | |
num_models = 4 | |
default_models = models[:num_models] | |
def extend_choices(choices): | |
return choices + (num_models - len(choices)) * ['NA'] | |
def update_imgbox(choices): | |
choices_plus = extend_choices(choices) | |
return [gr.Image(None, label = m, visible = True) for m in choices_plus] | |
def gen_fn(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noise = str(randint(0, 99999999999)) | |
return models_load[model_str](f'{prompt} {noise}') | |
with gr.Blocks() as demo: | |
with gr.Tab('Multiple models'): | |
with gr.Accordion('Model selection'): | |
model_choice = gr.Dropdown(models, label = f'Choose up to {num_models} different models', value = default_models, multiselect = True, max_choices = num_models, interactive = True) | |
txt_input = gr.Textbox(label = 'Prompt text') | |
gen_button = gr.Button('Generate') | |
with gr.Row(): | |
output, current_models = unzip([gr.Image(label = m), gr.Textbox(m, visible = False) for m in default_models]] | |
model_choice.change(update_imgbox, model_choice, output) | |
model_choice.change(extend_choices, model_choice, current_models) | |
for m, o in zip(current_models, output): | |
gen_button.click(gen_fn, [m, txt_input], o) | |
with gr.Tab('Single model'): | |
model_choice2 = gr.Dropdown(models, label = 'Choose model', value = models[0], filterable = False) | |
txt_input2 = gr.Textbox(label = 'Prompt text') | |
gen_button2 = gr.Button('Generate') | |
with gr.Row(): | |
num_images = 6 | |
output2 = [gr.Image(label = '') for _ in range(num_images)] | |
for o in output2: | |
gen_button2.click(gen_fn, [model_choice2, txt_input2], o) | |
demo.queue(concurrency_count = 36) | |
demo.launch() |