Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,849 Bytes
222e3bd e935ff6 ea6a933 83ebf46 ef93563 c79df46 ef93563 8871135 6f94cd7 74e078c 8e17b76 f2cf91b ef93563 8e17b76 3b01bbd 62d7b3e 3b01bbd b975979 62d7b3e 294478a f2cf91b 044fea4 f2cf91b 9366d4b b975979 5c4653b f2cf91b 5c4653b a65b632 044fea4 22b65d9 a65b632 477ec86 9366d4b 044fea4 c1ee979 fdc4995 c1ee979 fdc4995 c1ee979 a65b632 22b65d9 9366d4b 044fea4 5c4653b 1cd6967 74e078c 1ae721a dcbacca 76e9cbc 74e078c 76e9cbc 74e078c 76e9cbc 294478a 4ea5474 294478a c1ee979 74e078c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import sys
import requests
import json
from huggingface_hub import HfApi
# start xVASynth service (no HTTP)
import resources.app.no_server as xvaserver
from gr_client import BlocksDemo
# model
hf_model_name = "Pendrokar/xvapitch_nvidia"
model_repo = HfApi()
commits = model_repo.list_repo_commits(repo_id=hf_model_name)
latest_commit_sha = commits[0].commit_id
hf_cache_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/{latest_commit_sha}/'
print(hf_cache_models_path)
commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvasynth_lojban')
latest_commit_sha = commits[0].commit_id
hf_cache_lojban_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvasynth_lojban/snapshots/{latest_commit_sha}/'
print(hf_cache_lojban_models_path)
models_path = hf_cache_models_path
current_voice_model = None
base_speaker_emb = ''
def load_model(voice_model_name):
if voice_model_name == 'x_selpahi':
# Lojban
model_path = hf_cache_lojban_models_path + voice_model_name
model_type = 'FastPitch1.1'
else:
model_path = models_path + voice_model_name
model_type = 'xVAPitch'
language = 'en' # seems to have no effect if generated text is from a different language
data = {
'outputs': None,
'version': '3.0',
'model': model_path,
'modelType': model_type,
'base_lang': language,
'pluginsContext': '{}',
}
embs = base_speaker_emb
print('Loading voice model...')
try:
json_data = xvaserver.loadModel(data)
current_voice_model = voice_model_name
with open(model_path + '.json', 'r', encoding='utf-8') as f:
voice_model_json = json.load(f)
if model_type == 'xVAPitch':
embs = voice_model_json['games'][0]['base_speaker_emb']
elif model_type == 'FastPitch1.1':
embs = voice_model_json['games'][0]['resemblyzer']
except requests.exceptions.RequestException as err:
print(f'FAILED to load voice model: {err}')
return embs
class LocalBlocksDemo(BlocksDemo):
def predict(
self,
input_text,
voice,
lang,
pacing,
pitch,
energy,
anger,
happy,
sad,
surprise,
use_deepmoji
):
# grab only the first 1000 characters
input_text = input_text[:1000]
# load voice model if not the current model
if (current_voice_model != voice):
base_speaker_emb = load_model(voice)
model_type = 'xVAPitch'
pace = pacing if pacing else 1.0
save_path = '/tmp/xvapitch_audio_sample.wav'
language = lang
use_sr = 0
use_cleanup = 0
pluginsContext = {}
pluginsContext["mantella_settings"] = {
"emAngry": (anger if anger > 0 else 0),
"emHappy": (happy if happy > 0 else 0),
"emSad": (sad if sad > 0 else 0),
"emSurprise": (surprise if surprise > 0 else 0),
"run_model": use_deepmoji
}
data = {
'pluginsContext': json.dumps(pluginsContext),
'modelType': model_type,
# pad with whitespaces as a workaround to avoid cutoffs
'sequence': input_text.center(len(input_text) + 2, ' '),
'pace': pace,
'outfile': save_path,
'vocoder': 'n/a',
'base_lang': language,
'base_emb': base_speaker_emb,
'useSR': use_sr,
'useCleanup': use_cleanup,
}
print('Synthesizing...')
try:
json_data = xvaserver.synthesize(data)
# response = requests.post('http://0.0.0.0:8008/synthesize', json=data, timeout=60)
# response.raise_for_status() # If the response contains an HTTP error status code, raise an exception
# json_data = json.loads(response.text)
except requests.exceptions.RequestException as err:
print('FAILED to synthesize: {err}')
save_path = ''
response = {'text': '{"message": "Failed"}'}
json_data = {
'arpabet': ['Failed'],
'durations': [0],
'em_anger': anger,
'em_happy': happy,
'em_sad': sad,
'em_surprise': surprise,
}
# print('server.log contents:')
# with open('resources/app/server.log', 'r') as f:
# print(f.read())
arpabet_html = '<h6>ARPAbet & Phoneme lengths</h6>'
arpabet_symbols = json_data['arpabet'].split('|')
utter_time = 0
for symb_i in range(len(json_data['durations'])):
# skip PAD symbol
if (arpabet_symbols[symb_i] == '<PAD>'):
continue
length = float(json_data['durations'][symb_i])
arpa_length = str(round(length/2, 1))
arpabet_html += '<strong\
class="arpabet"\
style="padding: 0 '\
+ str(arpa_length)\
+'em"'\
+f" title=\"{utter_time} + {length}\""\
+'>'\
+ arpabet_symbols[symb_i]\
+ '</strong> '
utter_time += round(length, 1)
return [
save_path,
arpabet_html,
round(json_data['em_angry'][0], 2),
round(json_data['em_happy'][0], 2),
round(json_data['em_sad'][0], 2),
round(json_data['em_surprise'][0], 2),
json_data
]
if __name__ == "__main__":
print('running custom Gradio interface')
demo = LocalBlocksDemo(models_path, hf_cache_lojban_models_path)
demo.block.launch()
|